Диссертация - Санкт-Петербургский государственный

«
«
: 05.09.10–
–
,
2014
»
.
.
(
)»
............................................................................................................................ 4
1
.............................................................................................................. 9
1.1
................................................................. 9
1.2
........................................ 13
1.3
.................................................................................................... 14
............................................................................................................. 15
2
......................................................................................... 16
2.1
............. 18
2.1.1
........................................................................ 19
2.1.2
................................................................................. 24
2.2
.......... 27
2.2.1
............................................... 27
2.2.2
............................................................................................................................. 30
2.2.3
............ 33
2.3
.................. 34
2.4
«
» .... 38
............................................................................................................. 40
3
............................................................................. 41
3.1
..................... 41
3.2
....................................................... 48
2
3.3
«
» .... 55
............................................................................................................. 67
4
.................................................. 68
4.1
..................................................... 68
4.2
............................... 73
4.3
.......................................... 86
............................................................................................................. 89
5
............................................................................. 91
5.1
....................................................... 91
5.2
.................................................... 93
5.3
............. 101
5.4
............................................................................................................. 105
........................................................................................................... 122
.................................................................................................................... 123
....................................................................................................... 124
3
.
.
95%
.
.
,
,
.
,
.
,
,
,
,
,
,
,
.
.
,
,
,
.
,
,
,
,
.
4
,
,
,
,
,
,
,
.
,
.
,
.
,
,
.
.
,
«
»
.
.
:
1.
;
2.
;
3.
;
5
4.
.
.
,
.
,
,
,
.
:
1.
;
2.
;
3.
«
».
4.
136665 «
»
:
1.
,
;
2.
6
,
;
3.
«
»,
,
,
.
4.
,
:
1.
;
2.
;
3.
«
»;
4.
.
,
,
:
,
«
»(.
),
,
«
»(.
),
"
"
).
.
(2010 – 2014),
7
«13th International Conference on Electromechanics,
Electrotechnology, Electromaterials and Components» ICEEE-2010 (Alushta, 2010),
XVI
,
", (
2010 ),
,
«
2010»,
(
,
-
2010 ),
»
(
,
2011),
»
A
-11,
, 2011 ),
«
» (
UIE-2012
, 2011 ),
(
,
27-
2012),
,
,
-2012» (
, 2012),
3-
«
»
2014 ,
-2014,
«
,
,
-2014» (
,
, 2014),
«
«
»(
VII
»
, 2014)
.
17
,
6
,
,4
–
, 7
1–
8
–
.
1
1.1
,
,
,
,
.
500-10000
,
),
,
.
.
:
.
,
–
.
1000
1000
(
10000
)
.
,
–
–
.
.
.
,
.
80–90%.
,
.
50-60
.
9
.
,
,
.
1 –
60
(
).
.
,
,
,
(
);
(
0,93-0,97),
).
,
10
,
,
10 – 15 %.
.
,
,
.
.
.
.
2–
80
(IGBT),
(
100
)
,
.
11
3–
4–
.
,
,
12
.
.
,
,
,
,
,
,
,
.
1.2
,
,
.
,
,
,
,
.(
5–
,
13
. 5).
,
.
,
,
,
(
,
),
,
.
,
.
,
.
1.3
:
UNIVERSAL 2D
3D
,
«
14
»,
,
.
1.
.
2.
,
,
.
15
2
.
–
.
,
–
,
:
;
;
;
.
,
.
,
.
:
(
,
.);
.
.
,
,
.
,
,
.
16
,
,
.
.
,
,
.
,
.
.
,
60-70
.
,
.
,
,
,
,
,
,
.
.
,
,
,
)
.
.
,
,
.
17
,
.
,
,
.
.
.
.
,
,
.
(
)
)
.
,
,
,
.
,
.
,
,
.
,
.
(
).
2.1
,
.
dD/dt.
18
:(
),
,
.
2.1.1
2.1.1.1 2D–
,
,
,
.
.
,
.
:
1
Az
t
Az
0
J c,z .
,
,
. .
,
.
,
,
:
Az
dS
t
S
l –
1
l
dS V
I,
S
, S –
, I –
.
,
,
:
1
.
Az
J
Az
J c,z
.
0
19
,
,
.
2.1.1.2
D–
H–
,
.
,
.
,
,
.
,
,
.
,
,
.
,
:
H
J
1
E
H
E.
:
1
H
E
.
,
,
:
.
1
H
0
H
t .
.
:
20
.
1
.
.
H
J
0
H
.
,
H
,
0,
.
,
B
0,
,
;
H
0.
0
.
,
.
2.1.1.3 1D–
2D–
H–
,
,
,
,
.
,
.
,
.
:
(
1
H z)
0
Hz
,
t
:
1
.
.
Hz
J
.
0 Hz
0.
,
,
,
.
,
.
21
,
,
.
,
,
.
2.1.1.4 D–
T– ,
,
R–
,
:
.
.
,
:
B
t
E
1
1
J
T
.
:
B
0
H
0
T
.
,
1
T
T
t
0
:
0
0
t
.
.
:
B
0
0
H
0
0
T
0.
:
0
T
0
22
0.
,
,
:
1
0
1
T
T
T
T
t
0
0
0
t
0
0
,
(2.30) –
.
,
,
.
:
0
0
H
H
HT
0 ,
0
.
0
r
0
HT .
,
,
:
1
4
HT
r–
Jc
r
r
3
dV
,
,
.
,
0
r
0
HT
0
:
HT
0
HT
.
,
0
0
HT
.
,
0,
0.
HT
,
HT
,
:
0
,
0.
23
.
,
,
:
Hdl 0
l
,
.
,
,
,
,
.
2.1.2
.
(
),
,
)
,
.
,
3
)
q
:
q
J–
J J/ ,
.
.
q
Re J J / 2
,
.
J –
, J –
.
J.
:
C
T
t
T
q
.
24
–
q
;
–
;
–
–
;
,
t.
v
,
,
:
C
T
t
T
q
C Tv
.
.
.
,
1.
,
:
–
–
,
.
2.
–
.
T
0
n ,
.
p0:
p0
T
n
f t
.
3.
:
T
t
–
TT
;
TC ,
–
;
.
,
.
25
–
.
,
.
,
,
,
.
p0
2,56 TT
1, 25
TC
.
1
2:
p0
TT4
C
–
TC4 ,
.
,
,
:
1
C
S1
S2
1
1
2
–
1
1
,
2
; S1
S2 –
.
:
1
1
2
2
1
2
.
:
1
.
.
,
:
T,
,
,
,
.
26
,
.
2.2
2.2.1
.
,
,
.
0,
,
:
Z0
E Ht .
'
,
t
lQ
RQ
Q
Q
Q
2 EQ RQ
FQe
Z Q FQe
0,
H tQlQ
(1)
,
;
ZQ
2 Z 0Q RQ lQ Q
Q.
FQe
:
27
M QP I P ,
j
Q
(2)
P
FQe
N QP I PWP .
H tQ lQ
(3)
P
N QP –
Q
,
P.
N QP
M QP .
M QP :
N
l
Q
2
R
0 Q
QP
M
QP
.
R
Q
(2) – (4)
Q T;
:
(j M
P
.
Z N W )I
QP
Q QP P P
WP =1
0.
(4)
.
:
Q
(6)
; r
Q
j M
P
.
QP P
I
U
.
.
Q
(5)
(7)
,
,
.
IQ –
,
IQ –
,
IQ
FQe
,
I Qf ,
(6)
.
FQe,
(6)
-
(4)
Qf .
.
:
28
-
Q
Z
N;
. .
F
Q Qe
.
j M
p
0,
I
QP P
–
Q F;
.
i
(N
F
QQ Qe
.
e
I )
N
QQ Qf
Ni , Ne
–
QQ
QQ
.
N
Q
P
0,
I
QP P
,
,
Q.
r1,
r
1
R1
2 (R
1
l1 -
/ 2) W 2
1
1
,
l g
1 1
;W–
;
.
Q,
.
Z
0
.
Z Qi
RQ
. .
E /H
t t
(VR
,
jVX ) ,
2 (R
/ 2)
Qi
Qi
Qi
(VR
i
l
Qi Qi
lQ –
;
Q
Q
jVX ) ,
i
–
; VR
VX -
,
.
,
,
,
29
.
,
,
,
.
2.2.2
,
.
1
R R
C
T
t
H
R
j
1
R R
R
R
T
R
0H ;
(7)
q,
(8)
H–
;
2
T–
; q–
H
;
R
, q
;
;
–
,
2 f; C
–
4
0
;
–
10 9
;
–
.
(17)
:
1
R R
R
H
R
0
H
.
t
(9)
.
30
R2
H R2
H R2
);
He
H m sin
(
t
T R2 , t
R
);
p0
,
He –
; Hm –
(
,
); p0 –
.
:
T 4 Tc4
p0
–
;
T Tc ,
–
(10)
;
; Tc –
p0k
2,56 T
–
.
Tc 1,25 .
(7) – (9),
,
:
ai xi 1
bi xi
ci xi 1
di ,
1 i
N,
ci
i
i 1 1
hi
hi 1 hi
a1
cN
0,
:
ai
i
hi
bi
i 1
1
0,5
,
Ri
hi 1 hi 1
ai
ci
j
0,
31
di
0 (
1),
0,5
,
Ri
(11)
bi
ai
ci
0Hj (
2j i
0,
2j
di
1
0,5
,
Ri
ci
qi
C i j
T .
1j i
2);
:
bi
i 1
i
ai
hi
ai
hi 1 hi 1
C i
,
1j
ci
h –
di
i
i 1 1
hi
hi 1 hi
0,5
,
Ri
(12)
; 1–
;
2 –
.
(10)
,
.
,
.
–
,
.
.
,
–
:
1
–
i 1
i 1
2
ai bi di
,
ci
i ai
yi
VR
P2Q
Q
i 1 yi 1
ci
2
i
VR
VX
2
32
1, 1
N 1, N
VX
,
, i 1, 2, ..., N
1;
1, 1
1;
2 N;
N 2
1
i 1,
2 RQ Q H e
i ai
i 1, 2, ..., N
yN
–
bi
Q2Q
2, ...,1, 0 .
Q
2 RQ Q H e
2
,
Q –
RQ
Q;
Q
503
Q
Q ; P2Q
0 Q f –
Q,
Q2Q –
:
R2
R2
Q2Q
2 RqdR ,
P2Q
2 f
2 R
0H
2
dR .
0
R
:
H,T
1
H
1
T
Tk
1
Tk –
n
,n
2, 3, 4
.
2.2.3
.
(
).
,
C
T
t
1
R R
R
T
R
Z
T
Z
q
:
T j 12
Tj
rr T
T j 1 T j 12
j 12
1
q1 ;
C
j 1
1
q2 ,
C
zz T
33
zz –
rr
q1
q1
;
q2
q2
q
q1
q2 .
,
0 ,5q ,
: q1
T
t
C
q
0.
q2
T
,
z
z
:
C
t T
zz
T .
(11)
i
ai
hi
bi
:
i 1
hi 1 hi 1
ai
ci
,
C i
,
1j
ci
i
hi
i 1
hi 1 hi
,
C i j
T .
1j i
di
,
,
,
.
(10).
2.3
.
,
W,
,
,
,
W,
.
34
.
,
.
,
,
,
W
2* W,
W,
.
(
. 6),
3* W,
W
W.
,
W
,
.
,
.
2* W ,
.
W
W + W.
,
.
.
,
Wi=W *(n-i)/(n-1),
Wi –
,
;W –
;
n –
; i –
,
.
35
W,
300
250
200
150
100
50
0
1-
0
100
200
300
400
W,
300
250
200
150
100
50
0
500
600
700
800
900
1000
1100
1200 T, c
600
700
800
900
1000
1100
1200 T, c
600
700
800
900
1000
1100
1200 T, c
600
700
800
900
1000
1100
1200 T, c
600
700
800
900
1000
1100
1200 T, c
600
700
800
900
1000
1100
1200 T, c
2-
0
100
200
300
400
500
3-
W,
300
250
200
150
100
50
0
0
100
200
300
400
500
4-
W,
300
250
200
150
100
50
0
0
100
200
300
400
500
5-
W,
300
250
200
150
100
50
0
0
100
200
300
400
500
W,
300
250
200
150
100
50
0
6-
0
100
200
300
400
500
6 –
3-
36
:
i=1…x-1 Wi=W
W;
i=x+1…n
t1= t0 + t
Wi= W
t2= t0 +2* t: Wx+1= W +x* W,
t3= t0 +3* t:
t4= t0 +4* t:
Wx+2 …Wn = W ;
x=1,
Wx+1 … Wx+2=W
x>1,
Wx+1= W +(x-1)* W, Wx+2=W
x
Wx+1…Wx+3=W
2,
x>2,
W; Wx+3…Wn=W ;
W, Wx+3…Wn=W ;
W, Wx+4…Wn = W ;
Wx+1=W +(x-2)* W, Wx+2…Wx+3=W
W, Wx+4…Wn=W ;
…
tn= 0+n* t: Wx+1…Wn=W
W
:
i=1…x-1: Wi=W
W;
i=x…n
t1=t0
t:
Wx
t2=t0 +2* t:
W*(n-x); Wi=W
x 2,
x>2,
t3=t0 +3* t:
x 3,
x>3,
Wx
Wx
Wx
Wx
W*(n-1); Wx+1=W
W,
W*(n-x+1); Wx+1=W
Wx+2…Wn=W ;
W,
W*(n-1); Wx+1…Wx+2=W
W*(n-1), Wx+1…Wn=W
W.
i=1…n
;
n–
;
x–
;
t–
;
t0 –
;
W –
W
W x
n -1
W; Wx+3…Wn=W ;
W*(n-x+2), Wx+1…Wx+2=W
…
tn=t0+n* t: Wx
Wx+2…Wn=W ;
–
37
W; Wx+3…Wn=W ;
.
,
,
W.
,
,
,
.
W,
W.
,
.
,
,
,
.
2.4
«
»
.
,
,
,
.
,
,
,
,
38
T
=f(T), =f(T, H)
=f(T), =f(T), =f(T), =f(T)
t = t+ t
t=n* t
W=W+ W
T=T
7–
,
7.
39
1.
,
.
,
,
,
,
,
.
.
.
2.
.
,
,
.
40
,
3
3.1
.
,
,
.
,
.
,
,
,
,
,
,
,
(
8–
41
.8).
.
110
4
9 –
10 –
42
9,10,11.
11 –
12 –
~ 4200
.
– 1200° .
,
,
2-3
(
,
. 12).
10%.
43
13
–
,
«
»
.
(
)
,
,
,
.
,
,
,
.
,
.
130
.
,
44
13
14
–
(
130
,
4,125
)
,
.
14
130
,
.
, 3-
. 17),
110
. 16),
, 1-
(
,
, 2-
. 15),
50
.
,
.
.
1.
45
1
(
130
,
4,125
-
-
,
)
-
-
-
,
1
2
3
67%
70%
73%
1380
1287
1185
50
50
110
+
++
+++
15 –
(
130
1,
,
46
++
+
+++
++
+
+++
4,125
+++
++
+
)
16 –
(
130
2,
,
17 –
(
4,125
)
4,125
)
3,
130
,
47
,
.
,
,
,
.
,
,
,
,
,
,
:
.
3.2
,
,
,
.
,
.
,
48
.
Ø20
.
:
6
,
-250/4,
,
,
,
;
;
;
;
;
.
,
,
,
,
.
-250/4,
4
250
.
.
UNIVERSAL 2D.
.
.
.
.
,
49
,
,
.
.
,
,
,
.
18.
;
,
,
.
,
,
,
cos ,
.
–
,
.
60
,
1234,9° ,
– 1242° ,
– 1198,9° .
,
,
250
.
18–
50
,
,
.
.
,
;
.
,
.
,
.
,
.
,
.
,
,
,
,
,
,
,
.
,
.
,
,
,
,
,
,
,
(
,
,
. 19).
,
,
.
52° .
51
,
19 –
,
,
,
.
,
,
.
,
.
,
.
.
,
19,
.
,
,
,
.
52
,
,
,
.
,
,
,
,
.
,
(
. 20),
,
,
,
.
20 –
,
,
60-70° ,
.
53
,
.
,
,
60-70° ,
.
,
1100° ,
,
.
,
,
,
,
(
.
),
.
,
1100 °
, ,
,
(146° ).
25
,
.
,
.
,
,
,
.
,
54
,
300
.
,
,
,
,
.
.
,
,
,
,
,
.
,
.
,
,
.
.
.
3.3
«
.
(
)
:
55
»
;
;
;
;
,
2-4
(
),
;
20-30%
,
;
,
.
,
,
:
;
;
;
;
;
:
,
.
,
56
,
,
.
,
.
.
,
.
,
,
.
)
:
1.
.
2.
.
3.
.
.
,
.
,
,
.
,
57
,
.
.
,
1-
,
.
3-
,
,
,
.
,
.
3,
(
.
).
Universal2D
.
,
,
,
.
58
,
,
,
.
.
.
,
,
(
.21).
22
,
,
,
,
21 –
3.
,
,
59
,
,
(
. 23).
22 –
: 1 –3.5
, 3 – 4.7
3, 2 – 4.125
, 4 – 5.5
1400
,0
1300
1200
1
1100
1000
900
2
800
300
600
900
1200
1500
,
23 –
3-
(1)
60
14.7
(2)
3.5
.
,
,
,
.
24
,
(
.
. 25).
,
.
,
,
,
1300
1250
,°
1200
1150
1
1100
1050
2
1000
950
900
850
800
100
200
300
400
500 ,
600
700
800
900
24 –
3-
(1)
2-
(2)
.
61
,
.
,°
1250
1
1200
2
1150
1100
1050
1000
3000
5000
7000
,
9000
11000
25 –
.
1 –
3-
; 2 –
2,
,
.
,
,
.
.
,
26,
,
,
,
62
.
.
750
250
1400
,°
1200
1000
3,5
800
4,125
600
400
5,5
200
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
,
)
800
200
1400
,°
1200
1000
3,5
800
4,125
600
5,5
400
200
0
0
)
500
1000
1500
2000
,
2500
3000
600
3500
4000
4500
300
1400
1200
3,5
1000
800
4,125
600
4,7
400
200
0
)
0
500
1000
1500
2000
2500
26 –
3000
3500
130
63
4000
4500
.
95
. 27)
1
3
,
,
(
. 2),
,
,
29,
,
.
,
.
,
28
750 -
30.
- 250
1400
1200
1000
5
800
4,5
4
600
400
200
0
0
500
1000
1500
2000
2500
27 –
3000
3500
4000
95
64
4500
600 -
1400
- 250
1200
1000
4,6 1
800
4 2
600
3,5 3
400
200
0
0
500
1000
1500
2000
2500
3000
3500
28 –
4000
4500
95
420 -
- 130
1400
1200
1000
2.35
800
2
600
1.5
400
200
0
0
500
1000
1500
2000
2500
29 –
3000
3500
4000
95
65
4500
250 -
1400
- 130
1200
1000
2
800
1.75
1.5
600
400
200
0
0
500
1000
1500
2000
2500
3000
30 –
3500
4000
4500
95
2
,
26
27
28
29
30
750
750
750
750
750
750
750
600
600
600
420
420
420
250
250
250
600
425
275
120
600
475
325
600
440
310
310
215
90
330
260
200
250
250
250
250
250
250
250
250
250
250
130
130
130
130
130
130
,
,
864
904
936
968
1153
1191
1234
972
1015
1062
885
933
989
575
597
641
893
754
605
398
1230
1100
909
1212
1052
888
881
731
473
888
801
708
,
701
701
701
701
964
963
963
964
963
963
694
693
693
693
693
693
66
5,5
4,7
4,125
3,5
5
4,5
4
4,6
4
3,5
2.35
2
1.5
2
1.75
1.5
2100
2100
1900
2450
2100
1.
.
2.
.
3.
.
4.
.
67
4
4.1
.
,
,
230 ° .
,
, –
.
,
,
–
.
.
,
.
,
,
.
.
,
.
,
, ,
,
.
,
,
.
,
.
.
,
.
68
.
.
.
,
,
,
,
.
.
.
«
»
.
,
,
.
,
(
)
,
.
,
,
(550° ),
.
,
,
.
,
,
,
,
,–
.
,
.
(1988 .,
)
,
,
.
,
,
,
.
.
69
,
,
.
,
.
,
,
.
,
,
.
(
)
.
,
,
–
.
.
;
.
,
,
,
,
,
.
,
,
.
3
.
70
3
–
.
«
»
.
» –
(
).
–
.
«
«
»
»–
.
.
–
.
.
«
«
«
»–
.
» –
.
«
»
«
»
.
»–
.
«
»
–
.
«
.
»–
.
:
«
»
.
«
.
71
»–
»
–
,
.
»–
«
»
.
.
–
. «
. «
»
»
,
.
–
,
.
,
«
»–
«
»
.
–
«
.
»
,
.
«
»
–
.
–
.
«
»
.
«
» –
.
–
.
«
»
,
,
.
»
,
.
–
»–
.
,«
72
»–
.
4.2
.
,
,
.
,
,
,
,
.
,
20 –
30%
.
.
,
,
300 – 450 º ),
.
.
,
.
.
– 0,5 – 1
.
,
.
300
73
.
,
,
.
.
,
,
,
,
,
.
,
,
,
.
,
.
,
1000 – 1100
º
,
,
500 – 550
º
500 -1000
,
º
.
,
.
:
,
,
;
.
,
,
;
.
74
,
,
.
.
.
,
,
.
,
.
2,
,
1,
P2
P1
:
I 2 r2
I 2 r1 I 2 r2
P2
P1 P1
I 2 r1 -
P1
1
;
1 r1 / r2
2
; r1
D1
1
/(ag 1 ) -
,
,
2
g; r2
D2
,
2
/(a
2
) -
503
;
/( f )
.
r1
,
r2
1=1
:
1
D1
1
D2 g
1
1
2
1
2
75
D1
1
D2 g
;
1
2
-
,
,
.
.
,
.
.
[7,8,9,10,11].
.
,
.
,
,
31.
31 –
76
[5,6].
,
,
.
,
.
[16, 17]
.
.
,
;
,
.
.
,
.
,
.
,
,
.
.
:
rot H
rot E= -
E
0
H
t
div B=0
div D = div(
77
0E),
H, B, E
D –
;
-
;
;
0
0
-
-
; q0 -
.
,
.
.
:
,
,
,
.
,
.
,
,
.
–
.
.
,
.
Universal 2D.
,
(
)
(
,
,
,
78
(
).
),
.
.
.
,
,
.
,
.
,
.
:
–
10…15
;
–
;
–
.
,
4
600
200
40
(
.
.
,
. 4).
4
1
40
,
,
.
79
4
70
8
110
12
150
16
190
20
230
24
270
t, C
600
500
700
.
400
31
300
12
200
8
100
0
0.4 0.8 1.2 1.6
2
2.4
l,
700
31 –
8
1
,
,
700 º
5…10
.
,
.
5
,
1
50
,
1
8
2
40
3
30
4
20
6
15
8
10
.
(
. 5).
,
.
32
3
30
.
,
,
,
,
.
80
.
,%
.
,
80
1
75
70
65
.
2
60
55
50
0
20
40
60
80
v,
32 –
(
.
3
33).
700 º
30
:1–
2–
1
51 %.
:
66
49.9 %,
100
1 2
,%
80
70
60
50
40
30
20
10
50.8 %.
,
3
4
5
6
0 10 20 30 40 50 60 70 80 f,
33 –
700 º
(
:
70 %)
1–8
3
,
30
.
,2–6
5–2
,3–4
,6–1
,4–3
,
.
,
4
70 %,
2.4
10
,
,
6
.
.
(
81
.
. 4).
,%
75
1
2
70
1
65
3
60
,
4
,
55
50
34.
45
100
40
0
3
6
9
12 15
18
21
,
24
.
34 –
1
700 º
, 2 – 100
, 3 – 66
1 – 200
4 – 30
200
:
,
.
12
.
24
100
76 %,
– 79 %.
66
12
75 %,
– 24
78 %.
.
12
,
2
10
.
,
.
30
66
.
35
3
.
,
70 %
.
,
,
.
,
2
82
10
,
,%
12
4
1
90
.
2
80
70
,
,
4
3
60
50
,
40
5
30
0
3
6
9
12
15 18
21 24
,
35 –
.
2 – 30
.
3
700 º
: 1 – 66
,
, 3 – 10
,4–4
(IGBT),
,
.
.
,
.
(
,
)
.
1
8
.
.
,
8
40 150
(
.
. 4).
36.
83
1
,%
90
80
70
60
50
40
30
20
10
2
24
4
5
8
3
6
40 270
.
37.
0 10 20 30 40 50 60 70 80 f,
.
36 –
12
:1–8
6
,3–4
,
4–3
,5–2
,6–1
,% 1
80
70
60
50
40
30
20
10
,2–
5 %.
6
2
7.
3
1
»
«
24
0 10 20 30 40 50 60 70 80 f,
40 270
40 150
37 –
12
:1–3
3
(
. 4)
»,
.
,
.
,2–2
,3–1
6
.
1
66
1
4
8
12
16
20
24
0.499
0.677
0.729
0.748
0.763
0.772
0.780
100
0.172
0.438
0.597
0.670
0.714
0.753
0.780
0.508
0.684
0.737
0.756
0.770
0.782
0.787
84
0.174
0.442
0.601
0.680
0.727
0.762
0.787
7
.
3
66
1
4
8
12
16
20
24
0.677
0.815
0.858
0.868
0.874
0.876
0.883
100
0.316
0.630
0.781
0.827
0.852
0.867
0.883
0.740
0.850
0.883
0.893
0.901
0.902
0.906
0.374
0.688
0.805
0.853
0.879
0.893
0.906
,
,
,
,
.
8
700
1000
10
38.
,
24
1000
3
700
3
66
.
1000
,
3
1000
.
8
1000 º
,
4
6
8
,
24
4
8
16
24
4
8
16
24
100
100
66
45
35
100
66
30
20
,%
80
70
60
50
40
30
20
10
700 º
1
2
1000 º
0
4
8
12
16
20
38 –
: 1 – 8
10
85
,2–3
66
24
70 %
1000
(
,
.
. 8).
,
,
.
.
4.3
.
,
.
,
,
.
,
12
1
,
.
8
.
,
,
(
1.5–2
)
,
3–5
.
.
(
4
)
.
,
3
86
1
15-25
(
39).
,
3-5
(
40),
(
1/3)
(
).
4
–
8
,
15-30
(
40).
,
5-10
41),
(
(
)
(
– 38
1/3)
3
87
39 –
3
40 –
8
88
41 –
8
,
,
,
.
1.
100
1-3
.
.
2
4-5
.
.
2.
,
,
,
,
.
89
3.
,
,
.
4.
,
1000 º
3-8
1000 º
,
.
5.
,
1.5 –2
3-5
90
,
5
40-
60-
XX
.
.
,
.
,
,
.
,
.
,
,
,
,
–
.
,
,
,
,
,
.
,
,
.
801
.
,
.
5.1
:
.
,
91
42).
,
,
(
42).
d
d
42 –
43 –
92
44 –
,
.
,
.
,
,
.
,
,
,
.
5.2
.
.
,
,
.
.
,
,
.
93
.
,
,
.
rot
-
H
rotH
H
,
t
0
,
(13)
,
,
0
-
-
.
.
,
.
(13).
(
,
900
,
.
)
540
.
,
.
,
:
T,H
1
1 1
T, H
Tc -
,n–
T
Tc
1, T
n
, T
Tc ,
.
94
Tc
(14)
,
n
.
:
T
t
Cv
T –
div ( gradT ) w ,
, Cv –
,
(15)
–
w –
,
.
.
(13)
(15)
.
,
,
.
,
,
.
,
.
(
,
,
.),
.
(
,
900
,
.
540
.
,
.
95
)
,
,
,
.
.
,
,
,
,
,
.
)
.
.
,
,
.
,
,
.
.
,
.
.
–
.
.
.
.
.
.
)
,
96
.
,
.
.
,
.
.
,
(
45
45 –
46).
«
»
(
97
)
46 –
«
»,
98
Ajax Magnethermic
,
,
.
,
,
.
,
.
90%.
47
,
,
90%).
(
47 ).
18
16
14
,
12
10
0.5
8
6
0.8
4
2
1.2
0
0
100
200
300
400
500
,
600
700
1.2
F =2
,
1
0.8
F =4
0.6
F=6
0.4
F=8
0.2
F = 10
0
0
10
20
30
40
50
,
47 –
20° .
2
;b–
–
300°
99
60
70
/(
)
80
90
100
90%.
40
,
(725 – 750
).
600
.
.
,
.
600
,
,
,
,
20
.
(
47 ).
(
300
),
.
(700
),
.
,
,
.
.
.
48 –
100
(
. 48).
75%.
5.3
–
.
.
.
.
.
.
.
10-15%
,
.
,
,
.
.
,
,
,
101
.
,
.
,
,
.
RTF (T4)
.
,
,
.
49
,
.
,
.
,
RTF
.
49 –
CQ
91
102
,
,
“
(
”
,
).
,
(
”
20%),
.
“
”
(
)
“
”
(
).
,
.
–
,
DFF
.
,
–
(
49).
.
(HTM).
A
Ts
:
Ts
Tf
T0
c
1
T0
pa
a
b
x
1
c
a
103
pa
,
pc
,
pc
x
: T0 –
, Tf -
, a–
DFF, b-
,c–
–
RTF, p a
DFF, p c –
RTF.
“
”
“
”
.
.
,
(
,
).
,
–
–
DFF
IF
a
b
x
.
RTF
c
A
50 –
104
,
”
,
“
”
.
“
”
.
.
.
10-15%
.
,
,
,
.
,
.
–
,
,
.
[33].
5.4
1.
:
503-81,
2.
– 1.0-3.9
08
.
9045.
– 25-300
3.
.
– 450-650 º
105
+/-15
4.
2-30
.
5.
– 420
6.
-
.
7.
:
,
(
,
,
),
,
.
8.
.
Universal
DTM.
:
10-12 °C
,
40
:
400
,
370
.
4
10
.
,
,
,
.
:
1.
4
2.
10
3.
4
4
10
9.
,
106
,
1
(
25
50
)
2
,
.
,
.
,
,
4
.
9
4
550 º
25
1
2
1
3
0.02
7.4
50
4
0.043
7.2
100
5
0.079
7.2
150
6
0.124
7.2
200
7
0.15
7.2
250
8
0.201
7
300
9
0.218
7
0.087
0.17
0.339
0.509
0.679
0.825
0.99
250+160 250+160 250+160 250+160 250+160 250+160 250+160
º
.
1.5
5
7
7
7
7
7
7
4713
2412
1209
806
604
497
414
0.0754
18
0.161
18
0.288
18
0.427
17
0.528
15.5
0.634
15
0.693
14.5
0.318
0.636
1.27
1.8
2.19
2.65
3.08
250+160 250+160 250+160 250+160 250+160 250+160 250+160
º
.
2
12
13
13
12
12
12
12
1289
645
323
228
187
155
133
0.171
30
0.362
29
0.578
26
0.733
23
0.848
20
0.9
16.6
0.93
15.5
0.707
1.37
2.45
3.25
3.77
3.89
4.38
250+160 250+160 250+160 250+160 250+160 250+160 250+160
º
.
18
20
19
18
16
15
13
580
299
167
126
109
105
94
107
9
1
2
3
3
0.346
30
4
0.603
30
5
0.781
26.5
6
0.864
20
7
0.92
15.5
8
0.947
13
9
0.966
11.1
1.06
2.12
3.75
4.24
4.38
4.6
4.71
250+10 250+50 250+160 250+160 250+160 250+160 250+160
15
18
16
9
7
8
11
245
142
109
97
94
89
87
0.426
30
0.621
30
0.807
21.5
0.88
15.5
0.92
12
0.948
10
0.95
8.4
1.38
2.76
3.95
4.27
4.41
4.6
4.63
º
.
3.9
250+20 250+120 250+160 250+160 250+160 250+160 250+160
º
.
3
14
20
24
25
27
27
196
134
104
96
93
89
89
10
10,
,
1
)
2
,
25
50
.
4
3 – 3,9
(
,
.
(
51).
10
10
1
2
1
º
.
550
25
3
0.123
30
50
4
0.26
30
100
5
0.475
30
150
6
0.671
30
200
7
0.77
30
250
8
0.814
30
300
9
0.862
27
0.353
0.707
1.41
2.12
2.83
3.53
3.82
250+5
250+10 250+20 250+60 250+85 250+120 250+160
9
9
9
10
10
10
10
722
368
191
146
118
105
107
108
10
1
2
1.5
3
0.27
30
4
0.428
30
5
0.721
30
6
0.904
30
7
0.937
30
8
0.954
25
9
0.976
22
0.53
1.06
2.12
3.18
4.24
4.42
4.67
175+0
220+0
250+10
10
10
8
5
7
6
4
330
208
123
94
94
93
88
0.465
30
0.632
30
0.851
30
0.902
30
0.935
24
0.963
19
0.967
16.5
0.707
1.41
2.83
4.24
4.52
4.48
4.67
130+0
195+0
7
7
7
10
15
15
17
184
138
102
97
91
92
88
0.47
30
0.667
30
0.827
30
0.901
21
0.941
15.8
0.96
13.3
0.973
11
1.06
2.12
4.03
4.45
4.47
4.7
4.67
º
.
2
º
.
3
200
º
.
3.9
250+50 250+150 250+160 250+160
250+40 250+160 250+160 250+160 250+160
250+20 250+160 250+160 250+160 250+160 250+160
12
31
42
42
38
38
36
189
127
102
92
92
87
88
0.472
30
0.674
30
0.832
22
0.899
15.5
0.936
12
0.958
10
0.968
8.5
1.38
2.76
4.04
4.27
4.41
4.6
4.69
250+10 250+100 250+160 250+160 250+160 250+160 250+160
º
.
4
38
63
63
57
52
51
47
188
127
101
96
93
89
87
10
11,
.
,
,
51)
.
109
11
4
1
2
-
1
(4
+10
25
50
3
0.065
25
0.295
10
550 º
4
0.124
25
100
5
0.243
24
150
6
0.332
22
200
7
0.461
21
250
8
0.52
19.5
300
9
0.577
18
0.589
1.13
1.56
1.98
2.3
2.54
250+160 250+160 250+160 250+160 250+160 250+160 250+160
)
12
12
11
11
10
10
10
1390
696
363
263
207
178
161
0.352
30
0.552
30
0.774
30
0.807
30
0.814
27
0.843
23
0.862
19
0.53
1.06
2.12
3.18
3.82
4.06
4.03
5+160
10+160
70+160
15
14
15
15
14
12
11
311
160
108
104
107
101
102
0.466
30
0.659
30
0.816
30
0.849
29
0.9
23
0.934
19
0.956
16.5
0.707
1.41
2.83
4.1
4.34
4.48
4.67
0+130
25+160
14
12
4
8
3
2
3
184
131
101
100
94
92
88
º
.
-
1.5
(4
+10
)
170+160 250+160 250+160 250+160
º
.
-
2
(4
+10
)
125+160 250+160 250+160 250+160 250+160
º
.
110
11
-
3
(4
+10
)
0.407
30
0.621
30
0,743
15,5
0,836
11,2
0,887
9
0,922
7,7
0,939
6,4
1.06
2.12
2,19
2,44
2,54
2,72
2,71
200+25
230+60
250+0
250+0
250+0
250+0
250+0
5
8
10
7
6
3
3
212
137
114
102
98
92
92
0.426
30
0,601
20,2
0,782
12,4
0,846
9,1
0,888
7,3
0,91
5,9
0,928
5
1.38
1,86
2,28
2,51
2,68
2,71
2,76
250+20
250+0
250+0
250+0
250+0
250+0
250+0
8
3
6
14
15
14
14
196
134
110
100
93
92
91
º
.
-
3.9
(4
+10
)
º
.
,
.
:
,
400
,
130
4
.
,
40
, 10
12–14.
111
.
12
4
550 º
1
º
.
1.5
º
.
2
º
.
3
º
.
3.9
º
.
112
25
0.0222
8
0.0943
250+160
50
0.0496
8
0.189
250+160
100
0.087
8
0.377
250+160
6
7
7
4348
0.0931
19.5
0.345
250+160
2169
0.181
19
0.672
250+160
1088
0.337
19
1.34
250+160
12
13
13
1188
0.181
30
0.707
250+100
610
0.34
30
1.41
250+160
306
0.561
27.5
2.59
250+160
19
20
20
495
0.355
30
1.06
250+5
291
0.657
30
2.12
250+30
158
0.848
27.5
3.89
250+160
17
19
19
241
0.482
30
1.38
250+5
132
0.739
30
2.76
250+70
105
0.868
22.5
4.14
250+160
14
9
14
185
116
99
13
10
550 º
1
.
1.5
.
2
.
3
.
3.9
.
113
25
0.2
30
0.353
20+160
50
0.337
30
0.707
40+160
100
0.63
30
1.41
85+160
11
11
11
510
0.418
30
0.53
0+110
283
0.587
30
1.06
0+160
174
0.815
30
2.12
75+160
19
19
14
208
0.601
30
0.707
0+100
151
0.759
30
1.41
0+160
111
0.903
30
2.83
100+160
12
14
10
141
0.601
30
1.06
150+0
113
0.763
30
2.12
240+0
92
0.884
29.5
4.17
250+160
17
19
38
142
0.584
30
1.38
200+0
113
0.766
30
2.76
250+50
98
0.886
24
4.41
250+160
32
58
65
145
109
93
14
4
10
550º
1
(4
+10
)
º
.
1.5
(4
+10
)
º
.
2
(4
+10
)
º
.
3
(4
+10
)
º
.
3.9
(4
+10
)
º
.
25
0.071
28
0.33
250+160
12
1242
0.432
30
0.53
0+110
18
208
0.591
30
0.707
0+100
14
141
0.529
30
1.06
150+20
5
160
0.497
30
1.38
230+5
10
170
50
0.132
26
0.613
250+160
12
669
0.634
30
1.06
0+160
18
151
0.751
30
1.41
0+160
12
113
0.658
30
2.12
250+30
8
132
0.736
30
2.76
250+60
30
112
15 º ,
4
,
10
.
51
,
,
.
114
100
0.266
25
1.18
250+160
12
347
0.816
30
2.12
75+160
17
111
0.88
30
2.83
100+160
5
92
0.858
30
4.24
250+160
24
97
0.865
23
4.23
250+160
48
97
51 –
10
300
, 2 –
4
4
3.9
; 1–
, 3–
10
,
,
,
51.
.
,
,
,
.
,
.
52-55.
115
52 –
234*2.7
,
,
105
160*1.35
12
300
,
.
:
1–
2–
,
,
;
;
3–
4 –
,
;
,
.
53 –
,
160*1.35
,
300
234*2.7
12
105
,
.
:
1–
2–
,
,
;
;
3–
4–
,
;
,
.
116
54 –
234*2.7
,
,
200
12
300
237*1.8
,
.
:
1–
2–
,
,
;
;
3–
4–
,
;
,
.
55 –
,
160*1.35
,
340
237*1.8
20
180
,
.
:
1–
2–
,
,
;
;
3–
4–
,
;
,
.
117
,
,
.
(
)
,
,
.
,
,
,
,
,
,
.
,
,
,
,
,
52
53.
2
(
. 56)
,
57-58,
59.
118
56 –
57 –
2,
119
58 –
10
2
,
,
.
,
,
.
15
.
,
85%
,
82-94%
(
60%),
,
95%,
.
120
.
0.9
59 –
15
-
40*3.9
400*130*40
40*3.9
400*130*40
234*2.7 400*370*40
237*1.8 400*370*40
160*1.35 400*370*40
5
25
12
20
25
0.878
0.822
0.940
0.941
0.889
0.792
0.742
0.848
0.849
0.802
121
107.609
120.163
97.983
97.960
111.732
36
201
318
358
258
0.368
1.84
3.57
4.02
2.54
.
,
,
,
,
.
.
,
–
.
.
.
.
90%
,
.
,
,
.
.
,
.
.
122
1.
,
,
;
2.
UNIVERSAL 2D
;
3.
;
4.
;
5.
;
6.
.
7.
136665 «
»
123
1.
.
,
.
.– .:
2.
.
3.
.
, 1979
. –
.:
,
1981.
4.
,
.–
.:
,
.
.
,
5.
.
.«
», 2008.
.:
.
«
,
.
», 2010
,
,
.
.
.–
.:
.
«
», 2004.
6.
/
.
.
,
//
7. .
.- 2009..
, .
.
,
.
.
,
3 (9)
.
/
,
3 2007 .
8. Development trends in induction heating for steel forming /Rath Hage //ABB
Rev/ - 1992,
1.
9-14.
9. Induktive Zwischenerwarmungsanlage in einer Drahtststrabe.DotschErwin,
Jurgens Heinz, Neuhauts Klaus. Stahl und Eisen, 1987, 107,
10.
.,
.,
3, 29-34.
.
.
,1965,
11,
. 8.
11.
Innovative induction heating process line for hardening and tempering
spring steel wire. Lupi Sergio, Froehlke Manfred, Retting Stefan, Schiavon Mauro. Heat
Process. 2005. 3.
2, . 90 -93.
12.
.
.
. – .:
. 1965. 552
121
13.
.:
.,
.
.
, 1974
14.
.
.,
.
15.
.,
.
., 1985, 51-55.
Medium frequency induction heating equipment for steel wire heating.
Sasaki Hisao. Meiden Rev. Int. Ed. 1987,
16.
.
1, 43-46.
Einsatz der induktiven Erwawmung in der Draht- und Kabelindustrie.
Muller K.H. Electrowarme Int. 1980, B38,
5.
17.
//
07.10.92,
.,
.
,1992.
.
2925-892.
18.
/
. //
19.
.
., 1989,
21.
.,
.,
1. .101-103.
5. . 627-630.
. 1082846,
.
.
.,
Contactless heating of moving wires. Sidky Paulette S., Hocking M. Guryn.
High Pressures. 2001. 33.
20.
.,
., 1984,
.,
,
.
12.
. 899674,
.
.,
.
22.
.
.,
.
., 1982,
3.
.
.
23.
.
/
:
.-
.
. – 2005. –
53.
24.
.
.
http://www.nbuv.gov.ua/portal/natural/Geta/2006_77/13.pdf.
125
. 74. – . 47-
25.
.,
.
.
, 1967. 522 .
26.
. c.
60670 (
)
.,
27.
/
, 1942.
Baker R. Induction Heating of Moving Magnetic Strip/ Electrical
Engineering (AIEE Transactions), 1945, April, vol. 64.
28.
Baker R. Transverse Flux Induction Heating./ Electrical Engineering
(AIEE Transactions), 1950, vol. 69.
29.
Dede G. State-of-art and future trends in solid state power supplies for
induction heating. - Proceedings of the International Induction Heating Seminar, Padua,
Italy, May, 1998.
30.
Demidovitch V. Special Software IndHeat for Modeling Induction Heating
Processes// Proceedings of 3rd International Workshop on ELECTRIC AND
MAGNETIC FIELDS EMF`96, Liege, Belgium May 1996, pp. 273-278.
31.
The Software for Modeling the Induction Heating Devices using Personal
Computers/ Demidovitch V.B., RudnevV.I., Comracova G.D., Karpuchin M.G.
//Proceedings of 8th Conference on the Computation of Electromagnetic Fields,
COMPUMAG, July 7 - 11, 1991, Sorrento, Italy, pp. 227 -229
32.
Demidovitch V. Modeling of Induction Heating Processes in Steel
Industry/ Proceedings of International Congress Electromagnetic Processing of
Materials, Paris, vol. 2, May 1997, pp. 443-448.
33.
.,
.,
.,
.
//
I
4-5
34.
,
2001
,
, 2001.
V.Demidovitch, F.Tcmilenko, V.Scvortsov, G.Komrakova Computer
Models of Induction Heaters for Steel Plate Products// Proceedings of the 9th
International IGTE Symposium on Numerical Field Calculation in Electrical
Engineering, September 2000, Graz, Austria, p.452-457
126
35.
.,
.,
.
/ 34
Intern. Wiss. Koll. TU Ilmenau 1989 Vortragsreihe "Elektrowarme", s.19 - 22V. 1989.
36.
.,
.
/
.
.
. – 1997,
.
. 511. – .98-100.
37.
.,
.,
.,
. //
,
6, 2002. –
.23-29.
38.
.,
.,
.,
//
.
39.
:
, 1989,
. 2, . 73 - 83
Demidovitch V., Komrakova G., Tchmilenko F., Skvortsov V., Zlobina M.
Computer simulation of induction coils for heating steel plate products Proceedings of
5th International Symposium on Electric and Magnetic fields (From Numerical Models
to Industrial Applications), Ghent (Belgium), 17-19 May 2000.
40.
.,
.
. – .:
41.
, 1988. – 271 .
.
.
-
42.
:
, 1961,
. 53.
.
./
, 1961,
43.
-
,
.- .:
.3, . 5-18.
Ross N., Scherer R., Jancosek D., Induction Heating of Strip for
Galvanneal/ Iron and Steel Engineer, 1988, January.
44.
Pat.
5495094 (USA), Continuous Strip Material Induction Heating Coil /
Rowan H., Mortimer J., Loveless D.
127
45.
Demidovitch V., Tchmilenko F., Zlobina M. Nonlinear effects in the
technologies of high frequency of ferrous strip/ International Colloquium «Modelling of
Material Processing», May, 1999, Riga (Latvia)// Proceedings of Colloquium. – P. 234237.
46.
.,
.,
.
//
,
:
.
.
.–
,
.:
, 2000.
. 1. – .15-18.
47.
Ruhnke, A. Mühlbauer, A. Nikanorov, and V. Demidovitch, Thermal
Deformation of the Strip During Transverse Flux Induction Heating/ Proceedings of
ISEF99, Pavia, Italy, September 1999. - pp. 525-529.
48.
P. Dubois, M. Boyer (1995). Global approach to solve CGL process inertia
troubles and application to mathematical models/ GALVATECH’95, Chicago, 45.
49.
D. Delaunay (1996). Towards intelligent use of induction heating in steel
strip processing lines. UIE XIII Congress on Electricity Applications, MIII 9
50.
Japanese Patent No. 57-94524 (1982)
51.
Y. Suemutsi (1995). New coating line technologies. GALVATECH’95,
Chicago, 3
52.
R. Wang: Direct-fired heating in continuous hot-dip galvanizing lines/
MPT-Metallurgical Plant and Technology International, No.4/1991, 126
53.
Demidovitch V., Blake E., Churchill R. Single-Point Temperature Control
System for a Multi-Section Line Furnace - United States Patent 6,259,071 – 2001.
54.
V.Demidovitch, F.Tcmilenko, A. Malyshev Continuous hot dip galvanizing
lines utilizing induction heating technology/
,
I
,
4-5
2001
.
. //
, 2001.
55.
/
.- 2009.-
.
4 (10)
128
.
,
56.
/
, .
//
.
.- 2010.-
57.
.,
.
,
.
.
.
2 (12)
.,
.
.
. 2013. . 3.
58.
.,
1 (72). . 111-116
.,
.
.
. 2012. . 8.
10-1. . 101-103.
59.
.,
.
.
60.
. 2013.
.,
3. . 4-7.
.,
.
.
. 2012.
61.
.,
2. . 5-8.
.
.
. 2012.
62.
1. . 27-30.
.,
.,
.
.,
"
63.
-
.,
". 2011.
.
2. . 53-59.
.
.
. 2011. . 4.
64.
.,
.,
.
4 (62). . 145-149.
.,
.
. 2009.
17-21.
129
9. .
65.
.,
.,
.,
.,
.
.
RUS 2254691 09.01.2003
66.
.
.
2012.
.
4. . 27-32.
67.
.
:
.
. 2011.
11.
. 28-
38.
68.
.
,
.
. 2010.
69.
8. . 35-40.
Wang J., Ho S.L., Fu W.N., Wang Y., Pang L. An advanced double-layer
combined windings transverse flux system for thin strip induction heating. Journal of
Applied Physics. 2011. . 109.
70.
7.
.,
.
.
. 2010.
12.
. 12-15.
71.
.,
.
.
. 2010.
72.
5. . 10-17.
Galunin S.A., Zlobina M.V., Blinov K.Y. Numerical model approaches for
in-line strip induction heating. IEEE EUROCON 2009, EUROCON 2009 St.
Petersburg, 2009. . 1607-1610.
73.
.,
.
,
.
. 2009.
130
12. . 54a-61.
74.
.,
.
.
. 2009.
75.
.,
.
.,
14.
.,
.,
.
.
76.
5. . 47-55.
. 2008.
2. . 24-29.
Transverse flux heating installations in focus. Aluminium Today. 2002. .
1. . 36.
77.
M. Battistetti, P. Di Barba, F. Dughiero, M. Farina, S. Lupi, A. Savini
Optimal design of an inductor for transverse flux heating using a combined
evolutionary-simplex method. The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering. 2001. . 20.
78.
2. . 507-522.
Ruhnke A., Mühlbauer A., Nikanorov A., Demidovitch V. Thermal
deformation of the strip during transverse flux induction heating. The International
Journal for Computation and Mathematics in Electrical and Electronic Engineering.
2000. . 19.
79.
2. . 730-736.
Walker R.A., Hayward A. The application of high power transverse flux
induction heating in the metal strip industries. Aluminium Today. 1996. . 8.
5.
31-32.
80.
.,
.
.–
.
.
.
, 2011. 179
131
:
.