1226860

Etude de la production d’étrangeté dans les collisions
d’ions lourds ultra-relativistes à 130 GeV par paire de
nucléons avec l’expérience STAR au RHIC
Boris Hippolyte
To cite this version:
Boris Hippolyte. Etude de la production d’étrangeté dans les collisions d’ions lourds ultra-relativistes
à 130 GeV par paire de nucléons avec l’expérience STAR au RHIC. Physique Nucléaire Théorique
[nucl-th]. Université Louis Pasteur - Strasbourg I, 2002. Français. �tel-00003613�
HAL Id: tel-00003613
https://tel.archives-ouvertes.fr/tel-00003613
Submitted on 22 Oct 2003
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
√ sNN = 130 GeV
!"
# $%&'(
) *+ ,
- . /0/1 2 -+ 3
! " # $ % %
" & ' $ ( ) $ "
"
* + , - . /% 0 1 2'345 6 ! ' 7 '8 9:" % % " ! 6
% ;! ' "
% < =5 > ? > @ > A + -% + = % B B5 B 1 = @ * @C
D > E F ?" % % 7% 'G : % % "
& ! H 1 A + B 7 % ' :" I % 5 6 $ " B) """ % % " - < - = @ D J = K "" % L % " % 7 M < % J K ,6 :" E
! % ! ! 6 "
! > +N D 5 7 % ' : E ! @C D
"
B
@ & % 6 5 , 6 D O5 B " & ,5 , 6 6
5 ' 6< - BP B . Q A 1 @
@% R * D6 E E / "
% <
% " % "
! "
-$ " " " " " " " " " " " " " " "
6 #% # +5
@ # " "
" " " "
" " " "
" " " "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
W"W +6 " " " " " " " " " " " " " " " " " " " " " " "
W" " " " " " " " " " " " " " " " " " " " " " " " " " " "
W""W 5 W"" C " " " " " " " " "
W"Y ! < ' 8 " " " " " " " " " " " " " " " " " " " "
W"Y"W ! " " " " " " " " " " " " " " " " " " " " " "
W"Y" ! 66 " " " " " " " " " " " " " " " " " " " " "
W"Y"Y ! " " " " " " " " " " " " " " " " " "
W"S ! " " " " " " " " " " " " " " " " " " " " " " " " " "
W"S"W ! " " " " " " " " " " " " " " " " " "
W"S" @ 6 H0 " " " " " " " " " " " " " " " " " " " " " " " " " " "
W"S"Y - 6 ! " " " " " " " " " " "
W"T * ' " " " " " " " " " " " " " "
!" #
$ "W - *.& " " " " " " " " " " " " " " " " " " " " " " " " " " "
"W"W @ " " " " " " " " " " " " " " " " " " " " "
"W" @ 6! " " " " " " " " " " " " " "
" *.& " " " " " " " " " " " " " " " " "
""W .#R&Z 7 . #6 R & Z "" .0+0D " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
""Y +*>.D 7+ *> . D : "
"Y - DE>* " " " " " " " " " " " " " " " " " " " " " " " " " " "
"Y"W @ DE>* " " " " " " " " " " " " " " " " " " " " " " " "
"Y" @ E " " " " " " " " " " " " " "
"Y"Y @ *&. " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
"Y"S @ DFE DD- " " " " " " " " " " " " " " " " " " " " " " " "
"Y"T @ " " " " " " " " " " " " " " " "
"S ! DE>*< " " " " " " " " " " " " " " " " "
"S"W @ % < " " " " " " " " " " " " " " " " "
"S" @ % " " " " " " " " " " "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" " "
" " "
" " "
" " "
:
" " " "
" " " "
" " " "
" " " "
" " " "
" " " "
" " " "
" " " "
" " " "
" " " "
" " " "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
S
T
U
V
WX
WV
W
W
Y
Y
T
T
X
X
U
%
Y
Y
YY
YY
YS
YS
YS
YS
YT
YX
Y
S
S
SW
SW
S
&
%
!'
(
) * Y"W * " " " " " " " " " " " " "
Y"W"W > 6 " " " " "
∧B
" " " " " " " " " " " " "
Y"W" E
Y" * " " " " " " " " " " " " "
Y""W > " " " " " " " " "
Y"" " " " " " " " " " " "
Y""Y = 1 " " " " " " " " " " " " " "
Y"Y * % " " " " " " " " " " " " "
Y"Y"W * % " " " "
Y"Y" * % " "
Y"S D5 ' 7 : " " " " " " " " "
Y"T > H0 → Λ p π " " "
Y"T"W * Λ " " " " " " " " " " " "
Y"T" * H0 " " " " " " " " " " "
Y"T"Y @ H0
+ ! S"W @ E
S"W"W B DE>* "
S"W" D DE>* "
S"W"Y D E "
S"W"S ! S" > "
S""W > Ω H0 → Λ p π −
S"" # " " " " " "
S"Y J# K Ω " " " "
S"Y"W @ " " " " " " "
S"Y" # " " " " " " " "
S"S @ Q H0 " "
S"S"W @ 6 % " " " "
S"S" @ DE>* H0 " " " " "
-
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
$ "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
" " " " " " " " " " " " "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
T"W @ % " " " " " " " " " " " " " " " " " " " " " " " " "
T"W"W % " " " " "
T"W" - % " " " " " " "
T" @ " " " " " " " " " " " " " " " " " " " " " " " " " "
T""W @ % " " " " " " " " " " " " " " " " " " " "
T"" & $ G " " " " " " " " " " " " "
T""Y @ " " " " " " " " " " " " " " " " " " " " " " " "
T""S D " " " " " " " " " " " " " " " " " " " " " " "
T""T ! " " " " " " " " " " "
T"Y - " " " " " " " " " " " "
T"Y"W " " " " " " " " " " " " " " " " "
T"Y" - % " " " " " " " " " " " " " " " " "
T"S > " " " " " " " " " " " " " " " " " " "
+
T"S"W * Ω /Ω− " " " " " " " " " " " " " " " " " " " " " " " " " " "
T"S" ' " " " " " " " " " " " " " " " " " " " "
+
T"S"Y D % Ω− Ω "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
" " " " "
+
SX
SX
SU
SV
SV
SV
S
S
T
T
TS
TS
TT
TT
TV
,
X
X
XS
XT
XX
XV
XV
XV
X
U
UW
UY
US
UX
./
V
V
VW
V
V
VY
VX
V
T
T
U
W
W
WW
W
T"S"S
T"S"T
D % H0 " " " " " " " " " " " " " " " " " " " " " WY
@ H0 " " " " " " " " " " " " " " " " " " " WX
, $ & X"W @ Ω 6 DE>* " " "
X" % ! " " " " " " " " " " " " "
X""W % ! X"" % ! " "
X""Y ' ! 66
X"Y @ 6 " " " " " " " " " " " " "
X"Y"W - DE>*< && " " " " "
X"Y" @ ' < > BD& " " " " "
! "
"
"
"
"
"
"
"
" "
" "
" "
" "
" " " "
" " " "
" " " "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
0.
WV
W
W
WW
WWY
WWT
WWT
WWU
/
1
%
>"W % * " " " " " " " " " " " " " " " " " " " " " " " " " " " " " WY
>" ! % " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " WS
>"Y - " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " WT
( $'
/
&
&
2 34
&
&"W
&"
&"Y
&"S
&"T
&"X
&"U
D C 5 "
' " " " " "
- ' "
#% # +5" " " " " " " " " " "
% 7 O>V:" " "
% 7 #*#D:" "
D J/ψ 7 R>T:" " " " " " " " "
W"W
W"
W"Y
W"S
W"T
W"X
W"U
W"V
W"
W"W
W"WW
+6 7J π = 12 : DI7Y: %" " " " " " " " " " " " " " " " " " "
+
+6 7J π = 32 : DI7Y: %" " " " " " " " " " " " " " " " "
# 6 DI7Y: 7J π = 1+ : ! JK"
ss # "
= 7ns /ν : 7 5 s:L7 5 : ' "
@ % " " " " " " " " " " " " " " " " " " " " " "
- T µB " " " " " " "
6 Q 6! " " " "
> 7 O>U R>TU:"
D % Ω 7 R>S:" " " " " " " " " " " "
D #VX 6 H 0 " " " " " " " " " " " "
WX
WU
WV
W
S
V
V
"W
"
"Y
"S
"T
"X
"U
"V
@ *.& " " " " " " "
*.& ' 6! " " " " " " "
@ DE>*" " " " " " " " " " "
D % " "
% 7 : E"
D E" " "
E" " " " " " " " " " " " "
D 6 % ?- E+
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
Y
YY
YT
YX
YU
YU
YV
S
Y"W
Y"
Y"Y
Y"S
Y"T
Y"X
Y"U
Y"V
Y"
Y"W
Y"WW
* E" " " " " " " "
∧B
"
' E
% " " " " " "
D ' % " "
* % 6 JFK" " " " " " " " " " " " " " " " " " " "
* % 6 JZ K< Ω" " " " " " " " " " " " " " "
D " " " " " " " " " " " " " " " " " "
* % 6 J.K" " " " " " " " " " " " " " " " " " " "
Λ H0" " " " " " " " " " " " " " " "
& % " " " " " " " " "
* H0 → Σ− p" " " " " " " " " " " " " " " " " " "
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
SX
SU
SV
T
TW
TY
TS
TX
TX
TU
T
+
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
T
X
X
V
WW
W
W
&
2 34
S"W
S"
S"Y
S"S
S"T
S"X
S"U
S"V
S"
S"W
S"WW
S"W
S"WY
S"WS
S"WT
S"WX
- , Mt − M0 % " " " " " " " " " " " " " " "
D Ξ− → Λ π − " " " " " " " " " " " " " " " " " " "
D % BDE>* ! ' "
D J K " " " " " " " " " " " " " " "
* E" " " " " " " " " " " "
* Xi vertex E" " " " " " " "
> Ω− Ω̄+ E DE>*" " " " " " " " " " " " " " " " "
> H0 → Λ p π − E DE>*" " " " " " " " " " " " " " " "
- Ω % B#REZ" " " " " " " " " " " " " " " " " " " " " " "
- % " " " " " " " " " " " " " "
# Ω− Ω̄+ E DE>*" " " " " " " "
- % % " " " " " " " " "
= Ω− Ω̄+ " " " " " " " " " " " " " " " " " " " " "
- % H0 " " " " " " " " " " " " " " " " "
- % % H0 Λ"
- % % #FD&" " " " " " " "
XY
XY
XS
XX
XU
XU
X
X
U
UW
U
UY
US
UT
UT
UX
T"W
T"
T"Y
T"S
T"T
T"X
T"U
T"V
T"
T"W
T"WW
T"W
T"WY
T"WS
T"WT
T"WX
T"WU
T"WV
T"W
T"
T"W
T"
T"Y
T"S
T"T
T"X
T"U
- % ' " " " " " VW
- " " " " " " " " " " " " " " " VW
R E " " " VY
& $ G E" " " " " " " " VS
* Q % Ref f $ dE/dx ' " VT
G Ω" " " " " " " " " " " " " VX
D K ± % ' Ω" VU
D Λ % ' Ω" " VV
D % Λ ' Ω" " " " " " " VV
D Λ % ' H0" " V
# Λ 7> 5 % :" " " " " " " D cos Θ∗ Λ % Ω" " " " " " " " " " " " " " " " " " " " W
#Q cos Θ∗ 6 ! Ξ" " " " " " " " " " # % Ω" " " " " " " " " " " " " # Ω > 5 " " " " " " " " Y
- % (Ω− + Ω̄+ ) 7% :" T
> % 7 + O :" " X
> % " U
# (Ω− + Ω̄+ )" " " " " " " " " " " " " " " " " " " V
R % 7Mt − MΩ :" " " " " " " R % 7y :" " " " " " " +
- % Ω− Ω " " " " " " " " " " " " " " " " " " W
+
- % Ω− + Ω % J K"WW
D % " " " " " " " WY
&% $ 1 σ 2 σ < T ' dN/dy " " " " " " " " " " " " WS
- % H0 → Λ p π − " " " " " " " " " " " " " " " " " " WT
- % H0 → Λ Λ" " " " " " " " " " " " " " " " " " " WT
X"W
X"
X"Y
X"S
X"T
* 6 L 6 " " " " " " " " " " " " " " " " " " " " " " " "
- " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
+
' ! < T µB Ω /Ω− Ω− /π − "
* Ω/h− Ω/Ξ" " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
! % Q DE>*" " " " "
W
WWW
WW
WWY
WWS
X"X - % 6 " " " " " " " " " " " " " " WWT
X"U #% DE>* $ % $ &&" " " " " " WWX
>"W D " " " " " " " " " " " " " " " " " " " WT
>" * Ω ' 6 ! " WX
>"Y > 5 " " " " " " " " " " " " " " " " " " " " " WU
5
5
W"W R Q % 5" " " " " " " " " " "
W" # 6 7Y : 7Q:" " " " " " " " " " " " " " " " "
WX
WU
Y"W V 0" " " " " " " " " " " " " " " " " " " " " " " " " "
Y" D V 0 vertex" " " " " " " " " " " "
Y"Y D Xi vertex" " " " " " " " " " " "
TW
T
TS
S"W
S"
S"Y
S"S
S"T
S"X
# % " " "
# #FD&" " " " " " "
! 7 : 7:"
! E"
D H0 vertex" " " " " " " " " " " "
D H0 → Λ p π − " " " " " " " " " " " " " " " " " " "
XS
XS
XU
XV
UT
UU
T"W
T"
T"Y
T"S
T"T
T"X
T"U
T"V
T"
T"W
R % ' " " " V
D 6 $ Ω" " " " " " VY
F 7*: % η" " " " VT
F + + " " " " " " " " " VT
E ' Ω" " " " " " " " " S
* ' + O " X
D % Mt − MΩ " " " " " " " " " " " " " " " " " " " " " " D ' 7< 11%:" " " " " " " " " " " " " " " " " WW
E ! % " " " " " " " WY
E ' H0" " " " " " " " WS
X"W * 6L 6 ' " " " " " " " " " " " W
+
X" # Ω− Ω " " " WWW
X"Y Q " " " " " " " " WWU
>"W &
" WU
5
5
% & ' ' & ( ) * +
@ ! ( % ' $
[5 B 7 #: % ' ' % 6 "
@ % ' % % % "
# Q ! + + % % ' #" ' $ 5 "
> % ' 5 $ % M 5 % 5" @ -6 [ 7 : 6 % M < $ " D % ' ! M %< ! L " - ' 150 M eV " ' M '
αs % % 7 : 5" % ' M 6 - 6 "
# $ ! 5 % $ % % " % 7 : 5" % % 6 6 % ' "
# # ! A % 6 % " # Q % Q M ! L " &
! $ % % #< % "
@ % !"
@ % $ ! % < 7 "" 5 :"
@ Q " R
! 6 " % # % M Q ' " > 7 % 6! Q
! : % ' #" I % 6 " # % ' %
6 J K" & Q # ' 6! 5 < " % ' $" @ ! " #$ 6 !% %"
@ % * % .%6 & 7: +5 % ! 6 " " - ! 6 " @ 6" @ Q % ! "
- ! % $ % % " & % " R % % " # Q ) ' % M $" R
% 6 M 6 H0"
@ ! " ! 6 % % % H0"
+
@ Ω− Ω ! ' ! " @
$ ' ' 6 $ " - M % +
Ω /Ω− % ! %"
- Q ! % ! % " R %
6 % ! %
% '"
+
6
! ! \-#EVY]" ' ! ( 6 7µB 0
( 6 6:" D
C 5 5 " # % 5 " ! $ 7 "" C ' 6 : % % % <
gaz = 3
π2 4
π2
T Pgaz = 3 T 4
30
90
7&"W:
C 7 +# : ( 7 π − π 0 π + : 3"
qgp = 37
π2 4
π2
T + B Pqgp = 37 T 4 − B
30
90
7&":
5 7 = - : ( % 72 × 8 + 78 × 2 × 2 × 2 × 3 = 37: % 78 2 : 5 73 2 2 %:"
% B " \.0US] % 5 $ " # % % 6 6 R0 \.0US ]<
E(R) =
E(R0 ) =
4π 3
C
R B+
3
R
4π 3
4π 3
R B+3×
R B
3 0
3 0
R0 ,
C
R0
=
4V0 B
=
3×
4π 3
R B
3 0
( V0 % E(R0 ) 1 GeV %
R0 0, 7 f m V0 1, 44 f m3 <
1
4V0
B =
174 M eV /f m3
> % % M % ' <
Tc =
45
17π 2
> 6 ! 1/4
B 1/4
0, 72 B 1/4
7&"Y:
$ ½ ! < Tc 140 M eV " @ $ &"W ' c = 197 M eV.f m M eV /f m3 M eV 4
T4
) ! , ' - ! . ! /
pions
&"W< QGP
4
Tc
−B
P
' C '% 6 " E' Tc C ' 5 $ ! % %"
! ! 7 : M % \O&@US]" B) ( '8 6 6! 5 ' 6 "
& 5 7% &": % !"
> % 7dg : % 7Ns : &"S<
dg =
21
16 + Ns
2
7&"S:
0 % 7 : Q % 6 % ' %" @ $ &" % \1>*] % ' 6 % 5"
@ 72 % ! 3 % ! 2 % ! + 1
M <
:
Tc = 173 ± 8 M eV 7 %:
Tc = 154 ± 8 M eV 7Y %:
7&"T:
@ $ &"Y M % ! " @ % % &"W &"" @ 1 GeV /f m3 "
I ! " I % ' M #< ! 5 C ' " ,
!'
-
1
7 1
1.0
5
p/T
4
pSB/T
4
0.8
4
p/pSB
0.6
3
3 flavour
2+1 flavour
2 flavour
pure gauge
2
1
0.4
3 flavour
2 flavour
2+1 flavour
0.2
pure gauge
T/Tc
T [MeV]
0
0.0
100
200
300
400
500
600
1.0
1.5
2.0
2.5
3.0
3.5
4.0
&"< % ! 0! ! ) 0! ) 16.0
14.0
εSB/T4
ε/T4
12.0
10.0
8.0
6.0
3 flavour
2+1 flavour
2 flavour
4.0
2.0
T/Tc
0.0
1.0
1.5
2.0
2.5
3.0
3.5
4.0
&"Y< % ! 1 % /T 4
T /Tc 2 ' ! ! ) " # Q % % ! % $ " I ! $ !"
@ M \+0/T +0/X] % % $ &"" Q % < 5 s % 7Y 5 :
! 7 5 u d:" 6 Q J^WK % "
- N C .
! % " 0 Q C 7 6 : %
$ \+0/T]" @ L %7: 5 < qq > Q %
5 % " @ % % 6 @ <
1 a µν
Lqcd = iψγ µ (∂µ − igAµ )ψ − mψψ − Fµν
F
4 a 2.
1.
7&"X:
3.
W" 5 ψ ' Aµ _
" 5_
Y" "
- ( 5 u d s 6 " > % 5 7 % % 6 : &"X" - mi 0 7i = u, d, s: SU (3)< 5 ! ψD 7 : ψG 7( :" 0 7 m = 0: Q" > SU (3) SU (3)G ⊗ SU (3)D "
- % M M ! 5 u d" # @ % 7 ' :
6 % 7 (250M eV )3 : 5 < 6 6 " R % % 5 % C 6 7 Q ! 5:" ! % 5 ' 5 Q % 7∼ 300 M eV 5 ∼ 500 M eV 5 s: JK 7 % ∼ 5 M eV ∼ 150 M eV :" > 5 % ' % '% 5
#"
& ' % " - M 7 Tc : % '" @ 6! % +5 % "
% # 7 % z 6 : ' t "
8
5$
#
@ 6 % v ! t = 0" D % ! % \+0VY D>E] % τ 7! % : Q 6 $ &"S"
t
FREEZE
OUT
hadrons
libres
τ ~ 20 fm/c
GAZ HADRONIQUE
&"S< ' - ! 3&- τ ~ 10 fm/c
PHASE
MIXTE
τ ~ 5 fm/c
PQG
τ ~ 1 fm/c
PRE -EQUILIBRE
0
z
v~c
@ τ ! 6! ' " > ! # ' % 1 f m/c 6! 7 : ! 5 7 f m3:" 0 M M 71 3 f m/c: # % 5 7 f m/c" @ % ' 7 τ 1/3 : % ' 66 % ' % ' % C % Tc " > ! τ 10 − 20f m/c 6! % ' C ' M ' % % 105 f m3 % " 0 J'CK 7 20 f m/c: $ ( 6! $ 6 " @
"
& % Q ' ! #"
@ % ' 6 6! "
# ' 7 % M : % % /
$! #"
B) % C \[email protected] [email protected]>] " - % % \.#&] %"
# Q % % % 7
: # " % $ #"
% ! % % % +5" - Q % 6! % " - ' % $"
& # ' 7% $ &"Y:" % " ( ' # " " " D Q $ % % M ! % # % "
> ' <
• 6! _
• C _
' % • 6
% Q $ "
- % % 6 $ % 6! " & Q % % 6! % % $ #" # % " ` "
# 6! ! " #
! M C "
• % ! M 7% "Y"T:_
• \>[email protected]]"
% ! 0
5$
#
% 7% "S"W: M $ $ % ' ' %
% ' % " ! ' 6 ' 7 ! ;, \[email protected]@V]: % 6! ' ! \+>I O&#] "
@ 6 M 6 % 7% > >": Q " @ Q $ 7 % 4π : " %
' 7 ' : 6 7: 7: 7:"
# ' +5 \+0VY] % % <
=
1 dET
τ0 πR2 dy
7&"U:
% τ0 1 f m/c 7' $ &"S: % AGS = 1, 3 GeV /f m3 7dET /dy 200 GeV 4
11, 4 A GeV /c \+>*Y]: SP S = 3 GeV /f m3 7dET /dy 450 GeV #4# 158 A GeV /c \>@+T]:" > % ' # % M " R a ! " @ 6 % % Q $ # % % " 0 ! % #" - 6 7% "W:"
# ! M ' !
# % 6 < % ! J K " % 7 H0
6: "
@ 6! % $! # ' " # Q 7 M : Q " % Q # C " @ Q 5 6! 7 "" g + q → γ + q : % % ' " @ q + q → γ + g
% ! "
#Q % 6 #"# 158 A GeV % O>V 7% $
1.8
158 A GeV
1.6
208
Pb +
208
Pb
a)
Peripheral Collisions
1.4
1.2
&"T< 5 % "
)' 2 % ) % 678 "
2 ) "
9 '
(Nγ)Meas / (Nγ)Bkgd
1
0.8
0.6
1.8
b)
Central Collisions
1.6
1.4
1.2
1
0.8
0.6
0
0.5
1
1.5
2
2.5
3
3.5
4
Transverse Momentum (GeV/c)
&"T \>BB]:" % %
< π + + π − → γ + ρ Q 7ρ + π → γ + ρ : π 0 % % ' !"
I 6 % M $ % ρ ω φ" 7 % :"
% ! % ! ' % 7 1− 2 f m/c ρ: $ 6 % 6! ' " & ! " 0 % ! M "
@ #*#D % % 7 % < 0, 7 GeV /c2 : $
&"X \@#R]" Q % 76
! >: 6! 7 +:" - ! % $ % \O>V O>]"
' M ρ \>DX] % \*>U] % % "
- ' % 5 cc J/ψ 73097 M eV /c2 : % M ' % 6! " % ! \1.>V]" I # ' 2 -1
95 data
σtrig/σtot ~ 30 / 35 %
96 data
p⊥ > 200 MeV/c
Θee > 35 mrad
-6
2.1 < η < 2.65
〈Nch〉 = 250 / 220
eeγ
ρ/ω → ee
ω→
eeπ o
η ,→
φ → ee
-8
πo → eeγ
10
eeγ
10
2.1 < η < 2.65
p⊥ > 50 MeV/c
Θee > 35 mrad
〈dNch /dη〉 = 3.8
-5
-6
10
η
-7
→
ee
ω→
10
-8
10
η ,→
γ
eeπ o
eeγ
charm
-9
10
#
10
2
2
10
-7
p-Be 450 GeV
-4
φ → ee
Pb-Au 158 A GeV
5$
ρ,ω → ee
CERES/NA45
π0 → eeγ
10
-5
(d Nee /dηdm) / (dNch /dη) (50 MeV/c )
10
η→
(d Nee /dηdmee) / (dNch /dη) (100 MeV/c )
2 -1
10
-9
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
0
2
0.5
1
1.5
2
mee (GeV/c )
mee (GeV/c )
&"X< % 5 5:";<= #" 10! ! )2 "3 10! 2
&"U< % "
J/ψ % ;=> % 9 ! Measured / Expected J/ψ suppression
5 ' M
" & cc % M
$ 6 % % 6! " I M M % < χ ψ % J/ψ" @ R>T \>+*] 6 $ &"U" I ' % 6! 1.4
1.2
1
0.8
0.6
0.4
Pb - Pb 1998 with Minimum Bias
Pb - Pb 1996 with Minimum Bias
Pb - Pb 1996
S - U NA38
p - A NA38
p - p(d) NA51
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
3
ε (GeV/fm )
% ! " 6! % "
# % % % #"# % " # % %
<
• ! χc → J/ψ + γ % 2, 3 GeV /f m3 _
• J/ψ M "
R ' $ ! ! ' \B>FU]"
+
; ?) ) @
) ?) ) )
6) ? ! ?) ) ? A) 5) !
,
!
! @ % $ " @ ! 5 \B#@XS] ( 6 % 5 5 7qq : 5 7qqq : 7% \-#BUT]: " - ! % 6 6 7% \=I*]:"
I 6 % 5 W"W \>DV]<
\ [5
N R +6 Q I3 & 7Yeme :
S #
C B +
T E
+ 13
− 13
− 12
0
0
0
0
+ 13
+ 23
+ 12
0
0
0
0
+ 13
− 13
0
−1
0
0
0
+ 13
+ 23
0
0
1
0
0
+ 13
− 13
0
0
0
−1
0
+ 13
+ 23
0
0
0
0
1
W"W< ; ' ' % B ' -
@ 5 s ! ! ( ' 5 J K u d 5 c b t" > 5 ' % % 7 : % ' 5 s % " # % 5 u d s 6 7 \>DV]: % +
7% $ W"W J π = 12 : S 6 Y
$ W""
S
Y
n
0
p
(udd)
W"W< 3 9 1J π = 12 + 2 :C1$2 Σ
−1
Λ0
−
Σ0
(uds)
(dds)
Ξ
−2
(uud)
−
−1/2
+
(uus)
Ξ0
(dss)
−1
Σ
(uds)
I3
(uss)
0
+1/2
+1
-
.
Y b N + S + C...
Q b I3 + 12 Y
W"< % )9 ) ! 1Y 2 ) ! 1Q2 ' '
' - - 6 SU (3) J% K ' 6 ' M 7∼ 5%:"
+
! J π = 32 $ W" Ω− 7sss: " @ % ! 5 < "
S
−
0
∆
∆
(ddd)
+
++
∆
Y
(udd)
∆
(uud)
(uuu)
0
❋
❋
Σ−
(dds)
(1385)
−1
❋
Σ0
Σ
(uds)
(1385)
+
(uus)
(1385)
W"< 3 9 ❋
−
Ξ
Ξ
(dss)
(1530)
−2
1J π = 32 + 2 :C1$2 ❋
0
(uss)
(1530)
−
Ω
I3
(sss)
−3
−3/2
−1
−1/2
0
+1/2
+1
+3/2
@ ' 6 7|S| > 0: % ' 5 s " @ 6 ' 10−8 − 10−12 s 6 % " @ % % 7% : 7% :" # $ % 7'" Y"Y:< $ % %
' '
"
+ % 5 ' JK 5 "
& ' % \>=UU] 6 ! !
6 \-#BUT]" @ $ W"Y SU (3) 6! 6 5 ( 6
6! "
8
!
S
Y
Λn
+1
Λp
(2220)
(2230)
Λ+Λ
(2231)
ΛΣ
0
ΛΣ
−
0
H
ΛΣ +
Σ 0+ Σ 0
(2465)
(2385)
−
ΛΞ
ΛΞ
(2480)
−1
−1
−1/2
(2150)
J π = 0+
*
(2335)
(2395)
H0
0
+1/2
(2335)
J π = 1+
π
+
J =1
(2505)
0
H*
I3
+1
W"Y< % % " 9 :C1$2 1J π = 1+ 2 . /
D % ! H 0 1 ) 2 E %
Σ0 H ∗
# 6 % 6 % < % H 0 % J π = 0+ 72150 M eV : ' Λ 72231 M eV : H ∗ J π = 1+ 72335 M eV : ' Σ0 72385 M eV :" &
% 7 :
% ' $ 7% ' W"S: "
[ 7 : $ 6 % "
"
! # @ % ! " c $ C < 7 : 5 % 7 ' φ Ω 5 s: 5 % _ 7 : 5 7 M eV Q % '
ss: "
- 5 6 6 ' ! # % \*>=V]" R
% Q # % % % " # % 7 6
/
: ! '% " - 5 "
! " I ' 5 \D.I] 6! " @ $ W"S 5
"
(a)
(b)
q
s
−
q
−
s
g
s
g
s−
(c)
s
q
−
s
−
q
W"S< F
"
ss # 12
) qq 12 ! ) ! 1 2
@ 7 : ' % 80% \10VX]" # Q ' 7 % 5: ' 7 : qq → ss" ! % ' JK 5< % 300 M eV 7 5 s: ss"
- ! ( 6 ! Q % 5 s"
@
ss → qq 5
% ss % 7∼ 6 f m/c % $
&"S:" @ \10VX] ' $ W"T" 150 200 M eV 5 s s
% M ' 5 " @ ' 6! % " > 6 6 !
5 s s "
- $ 6
# " - ' 6 7Λ Ξ Ω: 5 s # % % % C " - Q % % $ 6 6 7' W"Y:"
0
!
W"T< G 1ns /ν 2 "
1' - s2H1' - 2 C ∼ 6 f m/c
! ! ! # 6 C 7T 150 M eV : ! #" @ % <
π + N → K + Λ et π + N → K + Λ
(Eseuil 540 M eV )
π + Λ → K + Ξ et π + Λ → K + Ξ
(Eseuil 560 M eV )
π + Ξ → K + Ω et π + Ξ → K + Ω
(Eseuil 710 M eV )
7W"W:
- " > ' 6 7
% % % 6! :
6 % % M " Ω
% % 600 M eV % M "
0 6 ! '% " ! % ! " > "
@ 6 <
π + π → π + π + Λ + Λ et N + N → N + N + Λ + Λ
(Eseuil 2200 M eV )
π + π → π + π + Ξ + Ξ et N + N → N + N + Ξ + Ξ
(Eseuil 2600 M eV ) 7W":
π + π → π + π + Ω + Ω et N + N → N + N + Ω + Ω
(Eseuil 3300 M eV )
A "
& ' % W"W W""
! % # ' 1 9 ( : $ ;
C 6 6 Ξ Ω" > ! # C 6 % % M " & ' % % ' <
Ξ
|P QG
Y
Ω
|P QG Ξ
0 % % C 7 +: <
Q Ω
|GH
Ξ
Ξ
|GH
Y
<
D 6 % <
6 <
Ξ
Ξ
|P QG >
|GH
Y
Y
7W"Y:
et
7W"S:
% Ω
Ω
|P QG > |GH
Ξ
Ξ
% % M % Ω/Ξ|P QG
Ω/Ξ|GH
>
Ξ/Y |P QG
Ξ/Y |GH
>1
6 7W"T:
7W"X:
D ' % ! % " @ ! % % N !" @ ! ! Q " # % 6
" " '8 $ J K "
$
%& ' ( ) *
I % ! % % " ` +5 7% & : % %
% Q < 7 : 7 : 7 : 7 %: $ 7%: 7% :" @ ! 7% $ W"X \O#*W]: ! ' " [ M <
• ! M " & "
! ! % "
• ! J 66 K %! ! "
!
primary
interaction
pre−
equilibrium
quark−gluon
plasma
hadron gas
non−equilibr.
hadronic i.a.
Gribov−Regge
theory
hydrodynamics
eikonalized
parton model
NJL
transport
classical
Yang Mills
hadronic cascade
parton
cascade
W"X< B ) )'
• ! J K 6! 6 Q "
R M M "
! ' % 7"" \+>D]:" % $ % "
$ %& ` ! ! "
@ 6 ' @C 7γ 100 : 6 "
@ % M % 7 : % ' " I % % ! \D0VU O>RW] B %*< 6 Q ' % \>I* O#*Y] %
J K" $ \>]" - 6 ! % Q \-*#W]"
> ! 7% $ W"X ( " & M % ' M 6! "" "
% # ' 1 9 ( : $ ;
%
0 ! 5 \[email protected]?T [email protected]?] '8
J K " > % $ 6 5 % " I ! 5 % " ' % ! D = K + /K − 5 ' 5 "
% 6! 7 : ; " % 66 ' %" I < % M ( " - ! 7"" \+>DV]: 7 : M % "
$ ! %& @ 66 6! " 7 # : 6 ( 7 :"
Q 7 : ! J % K 7 "" vz = z/t:" I % 6 6 " @ %
M C ' 7 ! 5 :" - % 7 : % M 7""\E#>W]:" @ ! 6 7 $ : 7: 6" @ % %
M \D.Y] \0*RV] ! " D '
7 % Q
! : ! 66 % ! ! "
$ $ %& @ ! 6! ! 6 ' " @ 6 % $! " - % 7 ! 6! \@#E] 5 \*>=] 6! \@#]:
+
!
\@# B>? +#W >BW]"
!% ! 7
! "" \+*0W]:" @ % ! i C 6 Tchim Q µ<
ni =
gi
2π 2
0
∞
p2 dp
e(Ei −µB Bi −µS Si −µI Ii )/Tchim ± 1
7W"U:
( 7 +# = - : %<
• gi ' _
• Ei Ei = p2i + m2i _
• Bi Si Ii _
6 3 ! • µB µS µI "
` % ½ 6 % 6! % !
6 µB "
> ( ! ! % 7 : T µB "
W"U< * "
T µB % )9 "
% ;$I 5 B , % % "
)' '
+ #
5 1
@ $ W"U ! 6 R>YX \>R-S]" @ % Q "
<
(Rjexp − Rjmod )2
χ2 =
j
σj2
7W"V:
% Rjexp % j ! σj Rjmod % % ! "
I % ' $ ' " @ Q ! '
! % 7 % % !: J',K" # % % W"" % $ 6! " 'C "
+
%&
0 7 5
'" $ W"Y: 6 "
@ ! % ! ' " & % 5 \.&U] 7
# 6 0 : 6! 6 7Λ
Ξ : \D.Y ] "
% '" Q ' 7 5 W"Y"W
%: ! % ' \1I.]"
' & - ! 5 7% & : % ! " @ % 6 6! % " #
Q %
= 7µF : 6! " ' 5 s % % M 6 % \B*#VV]" - N ( % 5 5 s 5 d % M % " Q 7% C :
5 % ,
!
" ! M $ G Q $ 6! <
7B 1/4 > 180 − 200M eV : 6 7#L>: ! 5 6 < ! '_
• • % 7 150 180M eV : 6 ! 5 6 7pn:" - % % ' ' < % % M 6 _
7B 1/4 < 150M eV : % % % 10−4 − 10−5 s"
• '
# M ' 6 7 : M ' M '" $ "
' ! H0
@ "" 6 . 7uuddss:
W"W" # ' 7 J 6K: 6 7 Λ:
'
6 7 % 6 :" $ ! 56 "
- ( ' 2055 M eV 7 % Λ : % ' < 7∆S = 2: % "
\>=UU] ' % 2055 M eV 2231 M eV Λ ! %
" - ' 7 % % % 10−8 − 10−10 s: % < Λn Σ0 n Σ− p Λpπ − ' " @ ! Q M ) C 7' Y"T":"
& 6 H0 Λ" @
' 7 Λ % % 6ΛΛ He $ 6 !\E>1W]:
ΛΛ Ξ− p" % 6 % $ % M % "
'$
& @ H0 5 Λ"
@ M : 5
5$
$ .
Q H0 " D ! 6 \D.] <
(Σ+ p)b → p + p (Ξ0 p)b → Λ + p (Ξ0 Λ)b → Ξ− + p (Ξ0 Ξ− )b → Ξ− + Λ"
>% M eV % % 1 5 cm" @ % % 7% 10−4 % (Ξ0 Ξ− )b 5.10−3 : % M
' ! % 7 \1>.] ' :"
- Q ' < 6 " @ % % C DE>* Q " 0 ; \D&X] ! % " - ' 5 6 ' '% "
,
- ) - Q Q % " # % 7'" W"": % 5 7 K + K 0 K − 70% :" # 6 #VW \#&DS] % Ξ− " > ! $ 6 " @ O>U \>RET] R>TU \>@X] 6 % 17, 4AGeV % 6! 7 +: % $
W"X" @ $ W"V \>R-V >*W] Q % 6 "
- 7 % % 40%:" ' +
R>TU Q Ξ "
@ $ W" Q % $ W" %<
E =
< Y ields >
< Nwounded >
/
P b−P b
< Y ields >
< Nwounded >
7W":
p−Be
+
15 Ω− Ω 6 " I % ! ' % ! "
! R>S \>=>] 7 Λ Ξ : % p+p 7 158 GeV : ) % Yield/wound. nucl. relative to p+Be
!
Yield/wound. nucl. relative to p+Be
8
WA97
NA57
10
Ξ
-
Λ
-
h
1
- ⎯+
Ω +Ω
WA97
NA57
10
⎯+
Ξ
⎯
Λ
1
pBe pPb
1
10
PbPb
10
2
pBe pPb
10
3
< Nwound >
1
10
PbPb
10
2
10
3
< Nwound >
W"V< 5 )9 B 9 #4# 43 4# F 5 67J ;=J K;*78 5>LM
W"< "
! 15 67J ;=J2 KG;>LM
\+>*]" & Q % $ W"V" ' Ξ−
+
% Ξ " I Ω− % % M % ' 7% W"W:" & +
Ω /Ω− ' 0, 5 % $ 95%<
% ! \[email protected]#] "
+ R>S $ H0 6 ' % ' 7 R>T \O#+W] : " # % #VX H0 → Σ− p % : 5
5$
$ /
−
Ω
Ω
+
Minv
+
Ω− + Ω
Minv
Minv
W"W< : Ω " #"# 15 "
;<72 K3>NM
\>&]" @ $ W"WW ' % "
> % M 6 H0s/Central
Collision
10-2
E896 DDC H0
Sensitivity
10-3
W"WW< : % 87I 9 H 0 Σ− p K577M
10-4
0
10
20
30
40
% 6 < A < 100 50
60 70
cτ/cm
#VXS \>*]"
%0
!
!" # $ % '
' & % 5' 9' ) NJ
A %
%
!
!" #
$ @ % M % <
d % 7∼ 160 M eV : _
d ) ' 6
' #"
- % ' " @ 7D E5 > * : ! '% 6 6 % ' ' "
#$ ! "
"
-. @ ! " @ % 26 cm−2 s−1 200 GeV Au79+
197 % L = 2 × 10
M "
! ' ! +5 % 7' $ "W: \*0D]"
100 GeV
PHOBOS
PHENIX
BRAHMS
STAR
"W< % +5 ' % 5$
!
%%
E > 6 E F BQ 6 % 1 M eV /u Q = +32"
' 7%6 ' : (
% 7∼ 100 M eV /u Q = +77:" - 7 6 : % 99%
!< % 109 ! 8, 6 GeV /u
" = 56 % 6 7 ' % 3, 8 km 1740 ' e e ee: ) !
' 7 E :" & 6 "
! ! &
@ ; 6! %< 7 : % 250 GeV "
10
10
Protons
Fixed Target
Luminosity (cm−2 sec−1 )
30
10
Protons−Gold
Silicon
29
10
28
10
AGS
10
10
10
RHIC
Iodine
10
27
10
Gold
10
26
6
5
4
3
2
Central Collisions/sec
RHIC Collider
31
1
10 h
10
2h
25
10
Storage Time
1/2 h
24
10
1.0 1.5
+
+
1.0 1.5
2.5
+
2.5
7
+
7
30
+
30
100
+
100
250
+
250
Equivalent Collider Energy (GeV/u)
"< 5 ' +5 9
@ $ " ' 6! !
' 6 " " "" #
Q 6! % 7% W": % "" 0 M $ % ' " # ' % 7 5 5: "
""
! -. f ( ' % " @ .#R&Z V %+
!
!" #
$ .0+0D +*>.D % W DE>*
$ X 7% $ "W:"
! ! ()*+ , ( ) * + .#R&Z R>T % %" # Q $ LΨ Ψ 7 % M - 6
5 c c̄ ' & : M $" - % ' #*#DR>ST .#R&Z ' 6 " R ' e± , µ± % 7 5 : M % % \0*V]"
! ! ! (./.
+ % 7'C : .0+0D ½ ! ' % 7(
$ :" ! γ π ρ M 1 φ Λ
' % .0+0D 'C "
R 6 M ' 0 < y < 1, 5" [ '8
% % ' " - ! ' *.& % 7 Q 6 6 C % 75 cm % T"W:" ! D "
! ! $ /01(% ,/ 01 ( % "
' ! J',K J 6K 8 6 ! " & 7( p̄) K ± π ± :"
"$
/01-
D DE>* .0+0D +*>.D % % ! $ "
7% $ "Y: 7 : ! '
N !" # $ !%& " ' % $ %
" $ 7) D F E5 7: D D - 7 ::" - C % 72.5 < |η| < 4: % J',K "
- % ! ! " " ; % % " 7 : !% "
Magnet Iron
Magnet Coils
Central Trigger Barrel
EMC
ToF
TPC
Forward TPC
Silicon Vertex Tracker
"Y< % :(
> % ! ! < * & 5%
7:" I ! " #$ ? - 7 : E + 7: ' 6 % "
! $ 210
@ ' ' " + 0 0, 5 T esla % 0.25 T esla 75 kGauss:
! "
%,
!
!" #
$ @ % " @ % G ' " - M ' ! 7 % % 0, 8 % 740 Gauss: 0, 02 % 71 Gauss: C " >% ! % B"
! $ ! 3 2
@ \*#E]
% 6 6 ' % 50 cm 200 cm" & 70 µm " ' % 4 m ! 4, 2 m 7' $ "S:"
@ ! 7% $ "W: ' 7 % Cb: $ ee ee ' eCe "
"S< : ) & @ 6 6 % % ±2 ±1 % ±1, 5 7' $ "T:" # % % M ∼ 40 M eV /c ! M "
@ % % C
% 6 "
@ C g
% ' ! Q < W 790 % 10 %
: " ' Q % % $ %.
+1
−1
TPC
"T< 5
! 1 2 (#5
+2
−2
y
OUEST
0
EST
z
√
√
7230 µm/ cm % 360 µm/ cm % ∼ 3, 4 mm ∼ 5.2 mm % : ' "
I ! ' ; %" % Q % e e % 95 ns" @ % % % 5 cm/µs"
$ < ∼ 10 M Hz "
@ % ! ' % 7−28 kV : " - ! $ 150 V /cm 710 mm 1, 5 mm: "
Inner Pads
2.85 mm x 11.5 mm
Total of 1,750 Pads
Row 1 thru 8 on 48 mm Centers
Row 8 thru 13 on 52 mm Centers
Cross Spacing 3.35 mm
Outer Pads
6.2 mm x 19.5 mm
Total of 3,942 Pads
6.7 x 20 mm Centers
183 x 3.35 = 613.05 mm
97 x 6.7 = 649.90 mm
143 x 6.7 = 958.10 mm
600.00 mm from DETECTOR CENTER
87 x 3.35 = 291.45 mm
3.35 mm CROSS SPACING
48.00 mm RADIAL SPACING
52.00 mm
6.70 mm CROSS SPACING
(7 x 48) + (5 x 52) = 596.00 mm
20 mm RADIAL SPACING
31 x 20 = 620.00 mm
1271.95 mm from DETECTOR CENTER
"X< : ) % (#5
@ e e" 12 M % < 7% $ "X:" @ 1750 711, 5 mm ×
2, 85 mm : " 13
60 cm 113 cm " @ %8
!
!" #
$ % 3942 719, 5 mm ×
6, 2 mm : ' 32 127, 2 cm 189, 2 cm ' " 0.5 mm % "
I $ ' % C "U" 0 6 ' $ J K % % % % <
d 7J K: % % % ∼ 135 V " M % "
d 7J K: 6 A ' C
$ % % %_
d "
"U< #
(#5
@ % % ( ! ' " # Q % 7∼ 1265 V :" @ ' % $ " @ '
% "
@ ' $ <
d _
% $ %/
d ( "
0 C 7 : ( +0 _
d dE/dx"
$ ' ! < ! 7 :
7: 7: % ' C 7 φ : "
@ 24 712 : % 5692
136608 % " @ % % $ ' % " < $ ' " @ ! <
d 7, 6: ) 512 % _
d % 7
: _
@% ' 7tm 62 µs:" Q ' $ 7ts 180 ns:" & ' F 7∼ 45%: <
F
=
ln 1 +
tm
t0
ln 1 +
tm
t0
7"W:
# ' ! $" I M 16 % " @ 6 ∼ 20 M byte/s
" > $! % % < ∼ 70.106 "
! $ $ 0*(
0 ! ! 6 7* & h
5%: % ' 1 m2 \@>D]" & '8 ' % 7β = P/E : ! % % <
@ % n 7 : h5% 1
A % θ % 7v: cos(θ) = nβ
\/DUU]" - % % 6 ' $ % ' L %"
+0
!
!" #
$ ! $ ' 42 @ ! ! " * "
= ! !
% ' "
- ' 6 ! % " # Q % ' % ! % _ C "
@ D % ! %< 20µm C φ" $ ( " @ % 6 10 15 cm"
@ 6 D " & % %
" & <
W" \&R] 7 Q 23 cm:_
" ' % "
+ $ ! ! % ' "
! $ 5 @ % 10 % " <
R = σAuAu × L
7, 2.103 mb × 2.10−2 mb−1 s−1
150 Hz
@ % 1 10 s−1 " & ' " 0 % % % ' "" ! 6 " # Q % " @ Q " % ' $ " 0 %"
+ <
#
$ = > !
9
+
<9
?
- ' ! ' \>[email protected]]" R ?- 7 17 m: ' 72 mrad: ' % "
- ' ' ' !" > ! " @ G J K "
(<
<9
! ?
120
" & ' 6 6 % 2 m 4 m % " &
% 2 π φ 7 6 ' : ±1 % % "
% G J K % 14 % % "
<
>@ $ !'
( ?
<9
@ % Q ' 6 " & ' 9000 % % 71 < |η| < 2:
"
"+
!
&
/01-'
D ' $ ' " & %! % $ 6" I ' % " \>@W] "" 6 " @ ' % % 6 " @ 6! %"
! ' 6
@ Q H% % % <
d % 0 % G 7
% % : ! ' ' " % +
!
!" #
$ 9000 $ 2000 % 240
WX 74 η 4 φ:" > % M 110 ns % ∼ 200 ns"
d % W ' % Q 40 µs % ' 7 Q :
% % % "
d % 6 H% 6 ' ! %
7 ":
d % Y % 6 % 10 ms" D ' % % % ! "
200
140
180
160
120
140
100
120
ZDC signal (East+West, arb. units)
ZDC signal (East+West, arb. units)
! ' ! 200
140
180
120
160
140
100
120
80
80
100
100
Min. Bias Trigger
Central Trigger
80
60
60
60
80
60
40
40
40
40
20
20
20
20
0
0
0
5000
10000
15000
20000
25000
30000
0
0
0
5000
10000
CTB signal (arb. units)
15000
20000
25000
30000
CTB signal (arb. units)
"V< : % 9 ) O*5 5(3
√
- >^> sN N = 130 GeV % ) 7% $ "V:<
d % J K ( % ( % " #% 450000 % 6 "
d % JK % 600000" @
% "
6 % '
+ #
$ 9
+%
& $ C ' % ' " - ! % M ' 6 % " & % % % % z Q "
++
!
!" #
$ ! &
' % : " " ' )
! # E) 6 ! ! P)
+
+,
!
%
!'
(
) * $ @ " R Q
' "
0 %
" ! " R ' % A % "
- ! % % " Q !
%
$ 7 : " #$ 6 H0 !" # % % " @ ' ' ! "
$
- R % % % Q " Q % J K 6 " > % "
& % ! "
$ 1 7 @ 512 % % % ' 6
% %"
11111111111
00000000000
00000000000
11111111111
00000000000
11111111111
00000000000
11111111111
00000000000
11111111111
11
00
11111111111
00000000000
" " 11111111111
00000000000
(#5
00000000000
11111111111
ionization
TPC sector
drift
gaussian fits
Y"W<
Z
@ C % 6 " @ C M '8 ' % C
7% $ Y"W:" @ ' " $ "
%
$ +.
$ ! E ∧ B
@ @% 7Y"W: $ C <
= m dv = q(E
+ v ∧ B)
+ mA(t)
E
dt
7Y"W:
B
q v % % ( E
A(t)
% % % C"
" @ - E
C 6 " @ % % vd <
qB
qE
vd
+(
∧ vd ) =
τ
m
m
( τ 6 " <
vd =
%<
• µ = qτ /m µ
+ E ∧ B ωτ + (E.B)B ω 2 τ 2 )
(
E
1 + ω2τ 2
B
B2
7Y":
_
• ω = −qB/m ' 6 "
@ Y" $ ! " % % % M "
' ' ' " - % % ! ! ! % 2 m 7' "Y":"
+z
anode wires
apparent drift
Y"< 5 ' Readout Pads
real trajectory
11
00
00
11
00
11
00
11
00
11
00
11
00
11
00
11
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
) ! ' E ∧ B 7∼ 100 µm: ∧B
K" I J E
"
+8
!
$"
%
!'
(
) * $ - I ' Q 6! " @ 6 % C
% % %" # Q $
% % % % "
$ ! 1 @ % " 0 $ ' " #
"
# ' ' "
> % %" - ( %
$ ' " @ ' % <
d ' ' % % _
d ' % ( A "
I " D % % 7 "" 1 GeV /c: " @ ' % " I G % "
$ ! ! % - " !" ! $ Y"Y !<
s>0
y
Y"Y< #& ) "
z
p
B
R
pz
Φo
yc
xc
zo
x
λ
pt
s
%%
& 5
+/
• xc yc ' :_
% 7 "" • R 6 _
• Φ0 ' 7 :_
• tanλ = pz /pt ( pz pt 7 x0 y0 z0 : % %"
6 6 ! " # ( ! % M $ Q " Q M ' Q "
$ ! $ 8 9
I ' 6 $ 1 " ! Q ' % "
0 \@&1S D>I]<
d ! $ " @ ' % " @ ! _
d " @ ! ' %
_
d ! % ! " χ2 "
- M ' " E $ ' 6 ! " $ " - $ 1 " "
# 6 ! ' % 6 ! " "
R % Ω ( "
$$
- @ W"W 7 : % $ 6 6 6 " # Q % % 6 " # ' % " # 7 : % " I % "
0
!
%
!'
(
) * $ $ $ 0 # ! ' Q % 7' \"S]:" - ( M % % " < ! ' " % ' % !" 0 ! % " % ! % " ` %" "
0 %
7% Y"S:" -! 3 cm 7 : Primary track dca < dca−min
Y"S< : TPC
% dca
Primary Vertex
8 % % ' % " > <
d ! $ 1
d $ % "
_
> 6 % 6 ' 0.5 cm 350 µm"
$ $ ! 0 @ " % ' % " $ ( % " J$ K % M $
% % " $ J K % % 6 JFK 6 JZ K"
%%
<
& 5
BC0 & 5D
. JF %K " # ' JFK % ' " Λ KS0 ! % % '% 7% Y"W:"
F
Λ
Λ̄
KS0
#
π−
p+
p̄ + π +
π− + π+
63.9%
63.9%
68.6%
Y"W< F cτ (cm)
7, 89
7, 89
2.68
) ! V 0
F % $ J$ K J !K"
reconstructed track
extrapolated track
neutral track
distance
TPC
pos−track
Y"T< % 9 . >/
dca−dgt
V0 Vertex
dca−pos
neg−track
dca−v0
Primary
Vertex
dca−neg
dl−v0
$ J$ K $ ! Y"Y"W" & ! 6 % % %
% 7% Y"T:<
d 7 " " !: M ' % _
d 7
% % _
% "!: M '
d V 0 % % "
7
; ">:
!
%
!'
(
) * $ @
% % V 0 ! ½ V 0 ' " & %! 5 6 " 7 Y": Q ! % "
Y"< : ' V 0 vertex
D " " !
"!
">
">
% > 10
> 0, 7 cm
< 0, 8 cm
< 0, 8 cm
> 2, 0 cm
% M $ % 6<
d 7' Y""W: T
" Q ' '% ' V 0 ' " I % % $ 10 _
d % " ' " @ 72 cm: % V 0 ' " > % ! 70, 7 cm: !% M "
I ! F< 6 Σ0 Σ0 → Λ + γ % ' 77, 4.10−20 s: Λ Λ Σ0 "
(<
Xi vertex
B! D
@ 6 7'"W"W: ! N " # Q
' $ " @
$ Y"X Ω− <
Ω− → Λ + K −
→ p + π −
7Y"Y:
& cτ 2, 46 cm ' " % V 0 Ω 7 Ξ:< V 0 vertex ! % % % " I ) ¾ 7K ∓ % Ω− Ω̄+ π∓ Ξ− Ξ̄+ :"
( ∼ 103 ( 6
( 10 V 0
) * + Λ %%
& 5
%
Κ
TPC
−
π−
bachelor
p
reconstructed track
extrapolated track
neutral track
Y"X< Λ
distance
% 9 .Q/
Ω
dca−vb
−
xi
Ω
dl−
dca−bac
dca−xi
Primary
Vertex
dca−v0
> M V 0 ' % % V 0 vertex
" @ ) V 0 % " ) ' M ! " @ V 0 " # Q % % "> ' 0.8 cm 7 Y":" & % ) V 0 ' " - % Xi vertex % % <
d V 0 M Λ 7 "" 1115.7 ± 10 M eV /c2 :_
d V 0 vertex % Xi vertex % N ! 7 % % % :_
d V 0 vertex % Xi vertex " > % V 0 vertex _
d 7 ": V 0 ) M '
% M _
d Xi vertex % % ' 7
"%: M ' _
7 "%: $ % d % Xi vertex ' "
% '
+
!
%
!'
(
) * $ @ Y"Y % % ! 5<
D "
"%
">
"%
Y"Y< : ' Xi vertex
$+
/
)
% > 10
< 0, 8 cm
< 0, 8 cm
> 5, 0 cm
> 2, 0 cm
3
2
> Q ' %
7 ^^: ' 6 7 :" @ Data Summary Tape
Global information
Y"U< : ) Trigger, magnetic field ...
Geometry
Calibration ...
Hits
Vertices
Primary Vertex
Xi−Vertex µDST
Tracks
TPC hits
global
Xi
V0
Kink
primaries
SVT hits
7% $ Y"U: % ! % % % M 6" > $ 6 % 6 5< V 0 vertex Xi vertex % 6 J1 5K 7 ' 5 :"
> µ 6 %" 7% 200 ' : ' < ! 6 "
R % ! 7 µ : " J Λ p π K H0 !"
$,
1 4 H0 → Λ p π
I 6 '
'8 %<
H0 M H0 → Λ + p + π −
→ p + π −
7Y"S:
% $$ ) ' '
H0 → Λ p π
JK 7 Y"Y Y"S: % $ " [
$ "
- % Λ " # H0 % V 0 vertex "
$ 5 0 Λ
- % V 0 vertex "
@ Λ % ' % " #
% H0 7' W"S: % ' ¿ "
- % V 0 vertex M % % % ' " & 6 % Λ 7 1115.68 M eV /c2 : "
E % ! Q ! % " - 32" % N % " # %! $ ) ' % G 7% T"":" & % < π − " ! Q 7% $ Y"T: 7 ">: %
7 ">:" # 7 % π − : Q G Y""" D ' V 0 vertex 7 ! % "" ">:
"
> C % % V 0 vertex % "
$ 5 ! 0 H0
@ H0 7% $ Y"V: <
<
5 #
V 0 vertex
@ ! V 0 vertex Λ" & % J$ K ' " I
'M 7 M eV /c2 Λ " & % % V 0 vertex" ! 6 7 "LN: Λ V 0 vertex % " D % % H0"
, - . ( H0 * + / (
0
1
,
!
π
%
!'
(
TPC
−
) * π
p
$ −
p
Λ
dca−v1v2
reconstructed track
extrapolated track
neutral track
distance
H0
dca−v0
dl−h0
dca−h0
Primary Vertex
Y"V< % 9 .+>/
(<
& 6 # Λ ' " & ' M g " & % $ −−→
Λ H0Λ $ Y"" > k H0 M %"
Pion
Proton
Y"< 5 Λ H0
P
Λ
H0
AΛ = k P
k=
A
H0Λ . P
|| P ||
2
% $$ ) ' '
<
$(#
$ H0 → Λ p π
.
& % " # Q % ' ! 6
50 cm" # $ % % % " @ $ Y"W ! ( % "
π
TPC
−
−
π
−
p
π
p
"
B "
p
p
Λ
Λ
Y"W< π
TPC
−
H0
H0
Primary
Vertex
Primary
Vertex
@ < p π − 7 :
H0 7 : Λ 7 :" #
% $ Y"W< 7 π − Λ H0 :" @ ! ' ( % Λ %" & % % "
<
E
1 H0
' Λ H0 Q % % % 7 :" # Q H0 Y"S" @ ' % %<
d H0_
d H0_
d % H0_
d % Λ H0_
8
!
%
!'
d H0 % d
Λ H0_
(
) * $ _
& % Q "" 6"
$ 5 $ H0
- H0 7% W"S: ' $ J 'K" @ ' 6 "
<
H0 → Σ− p
'% M ! <
H0 → Σ− + p
→ n + π −
7Y"T:
@ cτ Σ− 4, 43 cm $ " > Σ− 7 5 :" # ( $ ( Σ− π − Q V 0 vertex 7 Λ % $ Y"WW:"
& ' % \>&]" # Q $ ' % Σ− M M "
(<
H0 → Λ Λ
H0 → Ξ− p
- ' %" - % (
$ % ) "
H0
→
Λ
→ p + π −
+
Λ
→ p + π −
H0 → Ξ− + p
→ Λ + π −
→ p + π −
7Y"X:
% . 6 7' W"S: M '< ∼ 10−21 s" & % " @ % $ K ∗ φ" # <
W" 0 % ΛΛ Ξ− p M % % % $$ ) ' '
H0 → Λ p π
/
TPC
TPC
(n)
−
−
π
π
p
Σ
p
−
4.43cm
Λ
H0
Primary
Vertex
Primary
Vertex
Y"WW< H0 → Σ− p 10! ! )2 Λ
10! 2
% " @ % ' H0 % "
" 0 ' % % Q"
' V 0 vertex 7∼ 0.7/% : "
- " > H0 ΛΛ −
(p + π ) + (p + π − ) (63, 9)2 % 41%"
,0
!
%
!'
(
) * $ # !
! ! E I L87$ E ,
,
!
+ ! - % "
& % $ % ' " R % 6 "
Q " #
Q % <
W" _
" _
Y" "
> Q " - Ω H0" @ 6 " 0 ! $! " I % 7 !:" R % Ω" ! % H0 → Λ p π − "
+
0!
@ 7 : ' % !"
& 6 ' % " # Q
C " % $ 6 !% %"
' : 210
- H0 Y"T
" % " ' % ' % 7% $ S"W:" @ Q " 0 7 % % """:
" ! ! % %
\&R]" @ $ S" % $ % 6! " D 7 % % """: "
% % <
d % Q
7 ' % """:_
d \.&] "
+ !
100
%
1.2
,%
1
80
0.8
cτ
Maxwell
60
7.84 cm
350 MeV
0.6
450 MeV
2.46 cm
40
0.4
20
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
M t-M 0 [GeV/c]
0
0
10
20
30
40
50
60
Decay length [cm]
S"W< * %? B 1Mt − M0 ! ) T = 350 M eV T = 450 M eV 2 1 cτΩ = 2.46 cm cτΛ = 7.84 cm2
S"< : ! → Λ
"
R & ! )
:( 1& % K:C>LM2
Ξ−
π−
I ' \O>RW]"
# 7' S"W: 6 "
- Ω 6 H0
% % % " D ' 6 % " \*>/] % 6 7 H0: " % % H0 ,+
KS0
Λ (Λ̄)
Ξ−
Ω−
!
74π: > 9
250
80 (50)
5
0, 05
7 :
+ * 7 :
30
5 (5)
0, 3
0, 003
2.0
0, 3 (0, 3)
0.005
N coll.
500
15.103
200.103
7, 5.106
! dN/dy dN/dpt
5.103
150.103
106
15.106
S"W< % 4 100 GeV /A % KES;>>M
" 6 % ; ½ " S""
S"< % N/ev.
300 + 300
100 + 100
50 + 50
20 + 15
π±
) ! F :F "
1! "
∆y = 1, 52
K±
p, p̄
Λ, Λ̄
E
(M eV )
180
270
300
330
' ! 210
@ % % ' ' " + ' '
7 % "X X0 W"X
X0 : '8 ! Q " @ ! ' '
! " @ $ S"Y Q
EMC
S"Y< : ! :( TPC
SVT
(1 ladder)
CTB
RICH
Magnet
2
( 3
/ 0 + !
,
" % " @ ' % " @ C " ' g ' 6 7' T"": C "
' $ 2
I ' ! % % " @ 7 \@>D]:" # "Y" 4 %<
<
$ '
@ % 7% $ "X:" % C " 0 Q % " @ ! 7∼ 2.5 %: 6! 750 ppm:"
(<
! ' $ 6 @
$ % / =6 \[email protected]]" 0 ' $ % 103 % "
<
' $
@ J K % '
% % ! * 7 :"
@ $ % 7% $ S"S:" @
dE
dx 7' T"":"
<
F' $
:
& N " R % % "Y" ' 7' "W Y:" & ' ' " @ ' Q <
g(t, τ ) = Θ(t)
2
−t
t
eτ
τ
7S"W:
,,
!
S"S< : unit. arb.
) ! . / "
1 %
1%92 ) ! T
! ! . /2
+ ! 4
3.5
3
2.5
2
1.5
1
0.5
0
1
m 0.5
m
]
0
-0.5
y[
-1
-4
-2
0
2
4
]
x [mm
( τ Θ(t) ' .% "
Q % g(t, τ ) % " % 7% "Y":" % ' " % " #$ % Q "
@ % N % % ! %
Q" @ ' 7'
Y"S: % M " R % ' ! Q %"
' ' & @ ' ! " > 7 : 7: ' % 7% $ S"T: "
@ ! " & % " @ %
( ! "
% 7% Y"Y": % $ <
• % % %
> % _
) > % Q % ) > % % M Q % "
•
> % M @ ! S"Y"
counts
+ x10
!
,.
2
3000
2500
Residual (RC-MC)
x coord. rms=0.04
2000
y coord. rms=0.04
z coord. rms=0.14
S"T< ) (#5
"
Ω
1500
1000
500
0
-1
-0.8
-0.6
-0.4
-0.2
-0
0.2
0.4
0.6
0.8
1
[cm]
! - x - y - z R 7
F :
S"Y< 5 1 2 12
0.5 cm
0.5 cm
0.5 cm
3
counts
% " # Q % ' % "
@ !
7% $ S"X: Q "
12000
10000
Residual (RC-MC)
x coord. rms=0.98
S"X< (#5
Xi vertex
8000
y coord. rms=0.97
z coord. rms=1.07
6000
4000
2000
0
-10
-8
-6
-4
-2
0
2
4
6
8
10
[cm]
# L% L%
! ' "
"
,8
!
+"
1 5
+ ! @ " @ $ %
' ' % M
" @ M % M "
0 ' '< !' "
' ! 1 Ω H0 → Λ p π
−
@ $ %
" % ' % ' ! ¾
7% Y"Y:"
@ $ S"U S"V Ω H0 ' %" 0 S"S"
! % % 6
R S"S< 5 F > 2.0 cm
> 0.4 cm
> 5
' ) ! (#5
0 % % % "Y"" ' M " - % < ∼ 1 GeV /c ' " # Q Ω % ! % " ! % "
' ! ! ; @ % $ " % M % " M " & % !
" I ' '
% "
) 4 ( / 5
Ω
,/
Acceptance (%)
( D
Acceptance (%)
+% B
45
40
35
30
25
45
40
35
30
25
20
20
15
15
10
10
5
5
0
4
3.5
pt
[G 3
eV 2.5
/c 2
]
1.5
1
0.5
0 -3
-2
-1
0
2
1
idity
3
0
4
3.5
pt
[G 3
eV 2.5
/c 2
]
1.5
1
0.5
Rap
0 -3
-2
-1
0
2
1
3
idity
Rap
Ω− 1 ! )2 Ω̄+ 1 2 (#5 :( S"V< H0 → Λ p π−
(#5 :( Acceptance (%)
S"U< 45
40
35
30
25
20
15
10
5
0
4
pt3.5
[G 3
eV2.5
/c 2
] 1.5
1
0.5
0 -3
-2
-1
0
2
1
idity
Rap
3
@ Ω H0 7 : % " -
6 % % M %"
+$
6
( 7
Ω
@ % " @ ! % % ! "
- $ .0
!
" ' Ω"
+ ! ' ' 7 """: ' $ 0 N ' % % <
• _
• • _
% _
• % _
• "
@ % S"W"W< ! Ω " # Q $ % M " 0 % "" Ω− → Λ K − " # Q %
M J K"
counts
Ω-
x10
2
1400
1200
1000
800
600
400
200
0
3
Ra
pid 2
ity
1
0
-1
-2
-3
4
3
3.5
/c]
V
e
[G
t
p
2.5
2
1.5
1
0.5
S"< * 1 2 Ω− ! 0
;(Q
@ $ < %L 7y pt % $ S": % % % % " > % 7y pt : % M % "
+% B
( D
5
Ω
.
counts
>$ %
% M " # Q % % " @ $ ! % % " I
8 % $" ' ∼ 10 % $ " @ 7 : " @ $ S"W % 600
Real Data (mean= 2665)
500
Ω - Embedding (mean= 2893)
400
+
Ω Embedding (mean= 2941)
300
200
100
0
0
1000
2000
3000
4000
5000
Number of global tracks / event
S"W< * ! "
% ! +' /"
!/ (Ω− ) (Ω )
"
@ % " - ! 7 : % M " & ' ∧B
$ Y"W" E
" Q % M ( ' " . ∧B
% E
% " 0 ' % ' S"W"S"
-! % "
Q % 7% Y" Y"Y:"
' $ ! ; 0 $ ' " - % .
!
+ ! %<
Rec(y, pt )
.
Gen(y, pt )
Ef f (y, pt ) =
7S":
Efficiency (%)
Efficiency (%)
@ % $ S"" > % 7% $ S"WW:"
12
10
10
8
8
6
2
10
10
8
8
6
4
2
4
0
4
3.5
pt
[G 3
eV 2.5
/c 2
]
1.5
2
1
0.5
0 -3
:(
12
6
6
4
S"WW< R
12
Efficiency (%)
Efficiency (%)
12
-2
-1
0
1
2
idity
Rap
3
0
4
0
4
3.5
pt
[G 3
eV 2.5
/c 2
]
1.5
2
1
0.5
0 -3
-2
-1
0
1
2
3
idity
Rap
Ω− 1 ! )2 Ω̄+ 1 2 0
(#5 @ C %
%< 12%" & % 6 " - % 1, 70% Ω− 1, 66% Ω̄+ " ! Q ' % 7( A :" > % ' " @ % ' % " % 6 7% T":"
@ $ S"W "
- $ G " @ Ω− Ω̄+ ' % 7% >": $ S"WY" Q 7 T"T: % % " & ' % ( % ! |y| < 0.75 " D % ' ! %" # ' % ' W " @ ' % G H0
.%
2
1600
counts
x10
counts
++ 4000
Reconstructed Ω
3500
Associated Ω
3000
-
-
1400
Reconstructed Ω
Associated Ω
1200
-
-
1000
2500
800
2000
600
1500
1000
400
500
200
0
1.6
1.65
1.7
1.75
1.8
1.85
1.9
2
M Λ, K [Gev/c ]
0
1.6
1.65
1.7
-
1.75
1.8
1.85
1.9
2
M Λ, K [Gev/c ]
-
S"W< * ) 1 ! ) 92
% % % " & % Q 6 4% " % % % 72, 5%:"
++
@
8 % 6 . ) H0
$ Ω" " E ' " @ Xi vertex H% % % Y"Y" $ % % V 0 Xi H0 7'" Y"W Y"Y Y"S:"
D V 0 vertex Xi vertex ' % \>* >*V] H0 → Λ p π − 6 g M
% 6 "
- % H0 %
" & % $ % $ ! " 0 Λ % M '" - ! 6 % ' H0
Λ " - % Q !
% " I ' % % 7% S": R % % H0 Λ p π−"
.+
!
Ω
1.6
Total correction factor (%)
Total correction factor (%)
Ω-
1.4
1.2
1
! +
1.6
1.4
1.2
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
+ 0
0.5
1
1.5
2
2.5
M t-M Ω
0.5
1
1.5
2
2.5
M t-M Ω
S"WY< G Ω− 1 ! )2 Ω̄+ 1 2 ' ' # H0 7' W"S": 6 ! " H0 →
Λ p π − ' % " @ % % %<
W" 2.21 GeV % ' ¿ Λ 7 6! ! :_
" % Λ 2, 63 × 10−10 s" R 8
% '% ( % % M
" R $ % Λ "
@ $ S"WS % % 104
% H0" % Y"T" @ ! % % 10% " & Λ N "
@ 7% $ Y": ' ' % ' % %" @ $ Y"W ! % 7% Y"T": ' $ "
' Λ
" 103 % 10 H0 100 Λ % "
, &
%5
20 M eV ( G H0
.
counts
++ 1000
800
S"WS< *
H0 ' 600
400
Λ,Λ
200
0
2.1
2.15
2.2
2.25
2.3
2.35
2
M Λ, p ,π [GeV/c ]
counts
% $ S"WT ( Λ − Λ ' Q S"T" % C '
20 10% 0.5%"
50
40
S"WT< *
H0 Λ
30
20
10
0
2.1
2.15
2.2
2.25
S"T< : ' H0 vertex
2.3
2.35
2
M Λ, p, π [GeV/c ]
D "!
"LN
">
")>
% > 30
< 0, 5 cm
< 0, 8 cm
> 0, 6 cm
< 0, 8 cm
#$ '8 % % ! %
S"" % 10 H0 350 M eV 104 % " @ $ S"WX $ % M .,
!
+ ! counts
" S"T" @ % " ) M % J H0 + ΛK " - % " @ ;, % \ZI1W] 6 % " 6 ! !
% 350 M eV " # % Q % % "
160
140
120
S"WX< *
F :F
100
80
60
40
20
0
2.16
2.18
2.2
2.22
2.24
2.26
> % 6 % %"
2.28
2.3
MΛ, p, π [GeV/c2]
' ' ! 210 H0
D % ' ' % "
& % 100 H0 7 % : $ S"WX 1 × 10−3 " & Ω 7% $
S"WY:"
D σ % n % S $ ' x σ $ <
D
=
xσ
n×
7S"Y:
& H0 % $ '8 $ % 6" @ S"X 3σ 5σ
% ! ' <
++ G S"X< : H0 → Λ p π − >
&
&&
H0
0, 6 M
3, 5 M
..
D
3σ
10−1
3, 9 ×
1, 6 × 10−1
D
5σ
6, 4 × 10−1
2, 7 × 10−1
.8
!
+ ! $ # ) ' ' ) %
G ! 1#CG L8<2
+ ./
80
!
-
@ Q % % " @ $ Ω ' % " # % % % % H0 % M M "
R % ! Ω % ! ' %" R % M 6 6 % H0 ! <
" $ $ ! " # $ ' H0"
,
@
% "S" - 6 % Q J K JK" & Q J K
" - ' ! 7 : % 6! " - $ ' % "
5 # % M (
7% Y"Y"W: $ % % % 7 |zprim.vertex | > 2 m :"
& 6 ' %
( % " # Q ( ' % % ( % 7 % %:< % - M ' " % ' % % M $"
- ! C % ' % $ T"W" @6 % 100 cm z 700 µm 600 µm % x y " - % % < |zprim.vertex | < 100 cm" & % ( C "
% J K"
8
counts
&
T"W< * % ) % +5
5000
4000
3000
2000
1000
0
-100
5!
-50
0
50
100
z [cm]
counts
@ " D !
M % ! " I ' '! ' ! " - $ ' $ "V 7' "S": " % Au + Au" @ % \+>@V] % % % \-ZIW] 7 % 10.7 ± 0.5 barn 8.9 ± 0.3stat. ± 0.7syst. :" & % ' 10
10
10
10
5
4
T"< * 3
III
2
II
) . / . / I
10
1
0
100
200
300
400
500
600
700
primary tracks
' % \>[email protected]]" # Q % % ! Q " @
$ T" % " @ % J K 8
!
-
% % < 10 % C 10 − 25 % C
25 − 75 % C " @ % JK
$ " - 6 14 % 6 300 7
;! :" % % <
D 7 :
11%
14%
% > 344
> 300
T"W< ; %
,"
∼ 473000
∼ 416000
- ! $ ! % " Y" Y"Y" #
5 ' ' " # Q Λ Ks0 V 0 vertex Ξ Ω Xi vertex" % Λ p π − H0 % % % Q V 0 vertex Λ % % 7'" Y"T"W:" - M % $
' Ω Xi vertex %! % <
• G _
• _
• Ω"
' ' % $ "
5 ! @ % Q Y"Y"" @ % % % %" # % % Ω 7 : % $ 7 ' $ Y"T Y"X :" > % 6
7 % : % % " " ! Λ" # % % % Ω $ 8%
% 7 % "% "%:" > ' % % " @ T" Q ' ( 6
D T"< : '
' 9 " " !
0 Ω "!
"
"%
"%
% % 6
> 10
> 0, 7 cm
< 0, 8 cm
< 0, 8 cm
< 0, 8 cm
> 2, 0 cm
> 31
> 0, 7 cm
< 0, 5 cm
< 0, 5 cm
< 0, 6 cm
> 3, 2 cm
counts
counts
counts
% $ %" @ $ Ω $ T"Y" 700
500
500
600
400
400
500
300
300
400
300
200
200
200
100
100
100
0
20
25
30
35
40
45
50
Bachelor hits
0
20
25
30
35
40
45
50
Baryon hits
0
20
25
30
35
40
45
50
Meson hits
T"Y< ; (#5 Ω B % ' 1 3 9 "" p p Λ Λ2 9 (#5
$ 45 points ' G $ " %"
5 ! ! * < = <
$
6 @ % % C " & % % " & % $ " 0 $ G $ dE/dx"
@ " 45
% M %
8+
!
-
@" - ! ; % 6 70 % " @ % [100 M eV − 5 GeV ] ( G M + + "
> $ T"S % 6 70% ' " @ Q $ + + 6 ! "
@ Ω H0 $ T"S< 0 U' ! (#5
% 6 % '" &
$ ' " - 5 700 M eV " R $ % nσ
'" @ % σ % "
(<
dE/dx
@ dE/dx % " I ' ' " @ % '
' % " <
M 7 32 "'" T": ' 6 ( %
"
# ! T"Y % 7*:
% "
0 Q % √ Q % < Ref f = R/ n ( n G 6 " @ $ T"T % Q % ' 7η:"
-! 6 ' + + Ω Q %< σ = /Ref f "
$ 8
% |η|
0.0 − 0.1
0.1 − 0.2
0.2 − 0.3
0.3 − 0.4
0.4 − 0.5
0.5 − 0.6
0.6 − 0.7
0.7 − 0.8
0.9 − 1.0
1.0 →
12
' "
resolution
T"Y<
0% − 10%
0.550111
0.545285
0.536676
0.550063
0.513364
0.509784
0.480572
0.476077
0.459282
0.449447
10% − 26%
0.514528
0.535365
0.50982
0.518347
0.498163
0.489383
0.464715
0.472486
0.445808
0.451734
26% →
0.497981
0.495237
0.495062
0.472484
0.465823
0.45885
0.448218
0.435925
0.425025
0.41713
0.8
0.7
0.6
T"T< B Ref f 0.5
0 dE/dx η 0.4
0.3
0.2
0.1
0
-1
-0.5
0
0.5
1
η
<
! 7 "" π ± K ± p, p̄: % T"S" C 3)"3 )
T"S<
π±
σ
E 3
2
2
K±
p, p̄
99.73%
95.45%
95.45%
% + + % $ T"S" % % M $"
@ $ T"X Ω" @ % ½ " ` % C 5 $ "
@ 6
dE/dx 5σ
T"S"
µ 8,
!
-
-4
x10
dE/dx [keV/cm]
dE/dx [keV/cm]
-4
0.2
0.18
0.16
0.2
2
x10
x10
1600
0.18
1400
0.16
1200
0.14
0.14
0.12
0.12
1000
0.1
0.1
800
0.08
0.08
0.06
0.06
0.04
0.04
0.02
0.02
600
400
200
0.2
0.4
0.6
0.8
1
1.2
1.4
P [GeV/c]
0.2
0.4
0.6
0.8
1
1.2
1.4
P [GeV/c]
0
1.58 1.6 1.621.641.661.68 1.7 1.721.741.76
T"X< # U' ! Ω ! )
dE/dx 5σ
3σ '
Ω !
D $ % %
7 : ! 7 : " R
% "
5 ! $ @ T" $ ( % " %
" Ω % ' % % Ω" # Q ; "
- % % $ "
- Ω $ K − Λ ' 6 % 2/3 Λ Ω" - ( ' % Ω− Λ ' K − %" # $ Ω− " - ' % K − 5 ' Ω− " # % $ 8.
% 8
1000
7
counts
dcaKToPrimVertex [cm]
% Ω− < Ω− "
5 %
400
350
6
800
300
5
250
600
4
200
3
400
2
150
100
200
1
0
0
50
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dca ΩToPrimVertex [cm]
T"U< : 0
1.6
1.65
1.7
1.75
2
M( Λ,K) [GeV/c ]
K ± % Ω
@ $ T"U % 5 7 A(# %: ' Ω" @ ' ' 5 % Q % 5 % "
! Ω % 7 Ω % % :" > C $ T"U % % %
5 " >$ % '! ' N 5 8 % " " @ cm %<
dcaK
≥ 1, 6
dcaΩ + 0, 1
7T"W:
@ $ T"U T"W" 0 % % % ! " @ ' "
0 M '8 Λ Ω" & % ' Λ "
5 $ T"V Λ ' Ω Q % " & "
@ T"<
dcaΛ ≥ 1, 8
dcaΩ + 0, 1
7T":
2.5
500
-
counts
!
dca ΛToPrimVertex [cm]
88
1200
1000
2
400
800
1.5
300
600
1
200
400
0.5
0
0
100
200
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
dca ΩToPrimVertex [cm]
T"V< : 1.6
1.65
1.7
1.75
2
M( Λ,K) [GeV/c ]
Λ % Ω
30
1400
25
1200
1000
20
counts
decayLength Λ (cm)
@ ! 6 ' Ω % % Λ" R % % Y"Y" Λ N Ω M " @ $ T" ' % % % " > % Ω % Λ ' 7
: ! $ "
400
350
300
250
800
15
200
600
150
10
400
100
5
0
0
200
0
1
2
3
4
T"< : 5
6 7 8 9 10
decayLength Ω (cm)
50
0
1.6
1.65
1.7
1.75
2
M( Λ,K) [GeV/c ]
Λ Ω
% % % $ T"" @ $ 8/
cm %<
7T"Y:
dlΛ ≥ −4 dlΩ + 23
( dlΛ dlΩ % % Λ Ω"
0.6
1000
counts
dcaV2ToV1 [cm]
Ω ' $ H0 → Λ π − " @ % " > ' % ' ' H0 % Ω" R % M $ T"W 6 Λ % ' H0 M % % " @ 3000
0.5
800
0.4
2500
2000
600
0.3
1500
400
0.2
1000
200
0.1
0
0
500
0
0.1
T"W< : 0.2
0.3
0.4
0.5
0.6
dcaH0ToPrimVertex [cm]
0
2.1
2.15
2.2
2.25
2.3
2.35
-
2.4
2
M( Λ, p, π ) [GeV/c ]
Λ % H0
Λ ' H0 % " @ % %
'" 0 ! H0 Λ ' "
@ % % % 80 % <
dcaΛ ≤ 4, 15 dca2H0 − 5, 2 dcaH0 + 1, 7
@ T"U" 0 '8 "
7T"S:
M $ T"V ' 5 ! ' # $ % " @ ! ' %< /0
!
-
% Ω 0, 5 GeV /c" D ! % ! ' 7% S"Y" $
S"WW: " @ Λ Ω Ω M % M ! "
<
Λ
Pt
0.3
counts
arm [Gev/c]
I % 1115, 68± 15M eV Q '8 $ Λ Ω" 6 % % > 5 7% $ >"Y > >": $ T"WW " - M $ 7 :
200
180
0.25
160
140
0.2
120
0.15
100
80
0.1
60
40
0.05
20
0
-1
-0.5
0
0.5
0
1.1
1
α
1.105
1.11
1.115
1.12
1.125
1.13
2
M(p, π) [GeV/c ]
T"WW< ) Λ "# - 10! ! )2
10! 2
Λ 'M % Ω % ±15M eV Q % 7 :"
(<
cos Θ∗
R % % Q 7 :" > 6 $ 7dE/dx % Λ: " - ! ' ! " & Ξ
$ " @ Ξ ! Ω 7% $ Y"X: Ξ" # Q $ G % 7'" $ T"X: % 5 " ' $ /
counts
cos Θ Λ*
' % " @ Λ ' Ω 7 cos Θ∗ >"Y: ' % Ξ"
1
350
300
0.5
250
200
0
150
-0.5
100
50
-1
0
1.6
1.65
1.7
1.75
1.6
2
M( Λ,K) [GeV/c ]
1.65
1.7
1.75
2
M( Λ,K) [GeV/c ]
T"W< : cos Θ∗ Λ )9) Ω 0! ! ) "
! ' Λ Ω 1 %2 0! % 1 2 1 !2 ' 1 2
@ $ T"W ( Ξ % % cos Θ∗ 0, 7
1" R % 7'" $ T"WY: C $ ' Ξ" @ ;! C <
| cos Θ∗ | ≤ 0, 7
7T"T:
% $ T"W Q $ ' < Ω % " & % ! $ ' " I $ T"WY Q % Ξ"
@ % M Ω ' 6
! Ξ 7% $ >": ! Ξ % $ T"WY ;! 71321, 31 M eV /c2 :" D T"T % " 0 Q ! % Ξ"
-
*
cos Θ Λ
!
cos Θ Λ*
/
1
1
0.5
0.5
0
0
-0.5
-0.5
-1
-1
1.3
1.4
1.5
1.6
1.7
1.3
1.4
1.5
2
1.6
1.7
2
M( Λ ,π) [GeV/c ]
M( Λ,π) [GeV/c ]
T"WY< B cos Θ∗ Λ T Ω ' 0! =LN
)9) Ξ 0! ! ) ' ' B T 0! 5 ! 5 & Pt [GeV/c]
@ Ω % $ "
Ω"
4
3.5
3
T"WS< ) 2.5
"
Ω
2
1.5
1
0.5
0
-1.5
-1
-0.5
0
0.5
1
1.5
y
@ $ T"WS Ω ' Q % '" > % %< pt > 0.5 GeV /c 7% T""S:"
@ > 5 $ T"WT 7% >
>": % " 0 $ /%
0.5
2
M(Λ,K) [GeV/c ]
Pt arm [Gev/c]
% $ C % % % Q % Ω" @ % % ±15 M eV Q % Ω" # ' % C +
Ω 7α ': Ω− 7α ':"
0.45
1.7
1.65
0.4
1.6
0.35
1.55
0.3
1.5
0.25
1.45
0.2
1.4
0.15
1.35
0.1
1.3
0.05
1.25
0
-1
-0.5
0
0.5
1
α
1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76
2
M(Λ, π) [GeV/c ]
T"WT< ) Ω "#
Ω % )9) 1 2
- 1 ! )2 + % $ $ > 5 +
Ξ Ξ− ' 6 ! Ξ Ω $ T"WT" 0 ' Xi vertex % ±10M eV Q % Ξ 7 C : cos Θ∗ " 0 M % % "
@ T"T 6"
/+
!
D T"T< ( "
Ω
1dl2 "
) 1dca2 % 1pvx2 "
1pt2
dlΩ
dcaΩ,pvx
dcaΛ,K
dcap,π
dE/dx
ptΩ
Λ
Ωa
a)
Ξ<
0 7 7
8"
dlΛ
dcaK,pvx
dcaΛ,pvx
|cosΘ∗Λ |
|cosΘ∗K |
-
% 7:
>
<
<
<
>
<
>
∈
∈
≥
≥
≥
≤
≤
3, 2 [cm]
0, 6 [cm]
0, 5 [cm]
0, 5 [cm]
31
3σ 7K, π : 2σ 7p:
0, 5 [GeV /c]
1115, 68 ± 7 [M eV /c2 ]
1321, 31 ± 10 [M eV /c2 ]
23 − 4 × dlΩ [cm]
0, 1 + 1, 6 × dcaΩ,pvx [cm]
0, 1 + 1, 8 × dcaΩ,pvx [cm]
0, 7
0, 9
% ,$
5 $ /
5 $ % counts
@ Q % ( ! % ' 7% $ T"WX:" & 200
180
160
T"WX< *
(Ω− + Ω̄+ ) |y| < 0, 75 14 %
% ' "
==
140
120
100
80
60
40
20
0
1.6
1.62
1.64
1.66
1.68
1.7
1.72
1.74
1.76
2
M Λ,K [GeV/c ]
% M " & ' ' ' '
' " - $ % M %" - % 6A '" $ 7 "" 14% |y| < 1:"
<
*
- : @ Ω ' % % 7∼ 10−9 s: 7∼ 10−21 s:" % M "
R ' + O M 6 +
$ T"WU % Ω− + Ω ' <
(x−µ)2
k
fg (x) = √ e− 2σ2 + p0 + p1 x
σ 2π
fb−w (x) =
1
kΓ
2π (x − µ)2 +
- ' Γ2
4
7T"X:
7T"U:
+ p0 + p1 x
6A "
!
200
counts
counts
/,
180
-
200
180
160
160
140
140
120
120
100
100
80
80
60
60
40
40
20
20
0
0
1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76
2
MΛ,K [GeV/c ]
1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76
2
MΛ,K [GeV/c ]
T"WU< & (Ω− + Ω+ ) ! ! ) 3"6! @ % Ω % 6 \@> @>R >D]" &
% χ2 M ' M ' + O " @ T"X" > ( > χ2 /ddl
B + O 1.28
0, 99
1672, 0 ± 0, 5
10, 1 ± 1, 5
397, 8
242, 3
25, 3
6 [M eV /c2 ] 1672, 0 ± 0, 6
[M eV /c2 ]
10, 6 ± 1, 0
7±10 M eV )
373, 9
271, 8
7:
25, 4
T"X< & ! "
3"6! % ' + O " # % % ' 7 % % T"Y": % % "
(<
$
(
& % " @ ' ' C ' "
@ $ T"WV '" & 6 Q <
d 7 %: ±15 M eV Ω− _
5 $ counts
% /.
200
180
160
140
T"WV< & "
120
100
80
60
40
20
0
1.6
1.62
1.64
1.66
1.68
1.7
1.72
1.74
1.76
2
M Λ,K [GeV/c ]
d C % ' 7 : 15 M eV 8 M eV _
d
7
6 C "
: Q C 7% T"X: M %" # % % $ ' " ( % M ' 15 M eV % % ! % % + O " M ' M " ' % % % ( "
5$!
@ S"Y"" @
% " # ' % " > ' 7 "" |y| < 0, 75: ( ¾ Ω " - ! % % % 14 %"
+
@ % (Ω− + Ω ) % % $ T"W"
@
% $ < [0, 2 − 0, 8] [0, 8 − 1, 1] [1, 1 − 1, 4] [1, 4 − 2, 0] GeV /c2 " &
$ T"W %
) 3 /8
!
-
0.8 < M t-M Ω < 1.1
counts
counts
0.2 < M t-M Ω < 0.8
80
70
50
40
60
50
30
40
20
30
20
10
10
0
1.6
1.62 1.64 1.66 1.68 1.7
0
1.72 1.74 1.76
2
MΛ,K [GeV/c ]
1.62 1.64 1.66 1.68 1.7
1.72 1.74 1.76
2
MΛ,K [GeV/c ]
1.4 < M t-M Ω < 2.0
counts
counts
1.1 < M t-M Ω < 1.4
1.6
30
24
22
20
18
25
16
20
14
12
15
10
8
10
6
4
5
2
0
1.6
1.62 1.64 1.66 1.68 1.7
T"W< !
14 % %
1.72 1.74 1.76
2
MΛ,K [GeV/c ]
0
1.6
1.62 1.64 1.66 1.68 1.7
(Ω− + Ω̄+ ) |y| < 0, 75
1.72 1.74 1.76
2
MΛ,K [GeV/c ]
' ! % %
" ' % % 7 %: " # Q ' " $ % 7± 15 M eV : %
' 7 T"Y"W :" @ T"U Q % % % (Ω− + Ω̄+ ) Ω− Ω̄+ "
# % ! Q " @
Q 7% % [1, 1−1, 4] 2 % ' % " @ $ T" Q
% % +
Ω /Ω− ' %" I % % 5 $ Mt − MΩ [M eV /c2 ]
[0, 2 − 0, 8]
[0, 8 − 1, 1]
[1, 1 − 1, 4]
[1, 4 − 2, 0]
(Ω− + Ω̄+ )
102, 9 ± 31, 0
102, 8 ± 22, 8
80, 1 ± 18, 4
73, 7 ± 15, 4
//
Ω−
48, 7 ± 22, 6
55, 3 ± 16, 5
42, 4 ± 12, 9
39, 6 ± 11, 5
Ω̄+
57, 5 ± 21, 0
48, 7 ± 15, 6
43, 4 ± 12, 7
31, 0 ± 10, 5
1 2 ' Mt − MΩ & ) counts
T"U< :!
140
[0%-14%], |y|<0.75
120
Ω +Ω
Ω
Ω
100
T"< ; 1Mt − MΩ 2 14 % % |y| < 0.75
80
60
40
20
0
0
0.5
1
1.5
2
2.5
2
Mt -M Ω [Gev/c ]
counts
% $ T"W"
200
[0%-14%], Mt-MΩ ∈ [0.2;2.0]
180
160
T"W< ; 1y2 14 % % Mt − MΩ ∈ [0.2; 2.0]
Ω +Ω
Ω
Ω
140
120
100
80
60
40
20
0
-1
-0.5
0
0.5
1
y
00
!
,+
1 5 ' 0 Ω
+
-
/Ω−
counts
@ 6L 6 ' " - (
J K
%
6L 6 ' " @ Ω−
+
5 7 Ω 5: 5 6 " @ % 7' W"": % % % " > +
Ω− Ω ' ' % 7% W"W:"
M
" # Q 6 Q " # ! ' ' 7 J',K:" % ' Ω M ' " @ Q
+
Ω− Ω ' ' % % " D
Ω M % ! ' % "
+
@ $ T" % Ω− Ω
% 711 %: 7|y| < 1:"
90
80
70
Ω
Ω
60
50
40
30
T"< * Ω− 1 2 Ω+ 1 2 11 % |y| < 1.0
20
10
0
1.6
1.62
1.64
1.66
1.68
1.7
1.72
1.74
1.76
2
M( Λ ,K) [GeV/c ]
@ Ω /Ω− % 0, 95 ± 0, 15 1 '2 % 1 % $ 7% T"Y"W:" @ % T"U Q % +
+ $$ 0
7% $ T": %"
@% ' !
% Q "
% % J K M 6 %"
5 ' ! > counts
- ! % % ' 11 % " @ $ T"Y
% % "
18
16
14
T"Y< * Ω− + Ω+ . /
12
10
8
6
4
2
0
1.6
1.62
1.64
1.66
1.68
1.7
1.72
1.74
1.76
2
M( Λ ,K) [GeV/c ]
@ Ω ! ' " @ ' Q " @
! ' T"V ¿ "
< 11 %
(Ω− + Ω̄+ )
48, 9 ± 12, 4
Ω−
26, 6 ± 6, 7
Ω̄+
22, 3 ± 5, 6
T"V< :!
1< 11%2 & ) +
@ % Ω /Ω− < 0.84 ± 0.42" + ' 50 % C"
, 9 ( $ ( $ : ; 3 0 . 0
!
-
5 ' $ Ω Ω 7
−
+
@ % ' M ' % "
+ ! ' ' 7 % 5 : M " > Ω % ! "
R % 6 ! %"
Q ' Ω 7% T"U: ' % " # % % M ! 7% $ S"WY: ' %" @ 7% Y"Y
T: 43, 32 % Ω " = ! %<
E =
7T"V:
× - % |y| < 0.75 6 ' % " # $ '8 % 4π
7 dN/dy :"
I ' % $ 7"'" >" : ! %" # Q ! % " 0 % −
$ T"S Ω + Ω̄+ Ω− Ω̄+ " % 14 % "
- M ' " ! % $ % ' %" - M % " @ T"
) "
@ Q
$ % Ω− Ω̄+ " @ % σ/4 M 7∼ σ/2:" @ %
! % ' % % "
# ' dN/dy <
M Q % % 6
$ % " @ 1 2 σ $ T"T 6 N ' % %" @ 10
0%
-1
2
1
d N
2π mT Nevts dmTd y
+ $$ Exponential Fit
[0%-14%], |y|<0.75
10
10
10
Ω +Ω
Ω
Ω (x0.5)
-2
-3
-4
0
0.5
1
1.5
2
2.5
2
M t-M Ω [GeV/c ]
T"S< : ! & % [0 % − 14 %] C ) 0, 5 ' Ω̄+ (Ω− + Ω̄+ )
Ω−
Ω̄+
dN/dy
0, 64 ± 0, 14
0, 32 ± 0, 09
0, 34 ± 0, 09
T [M eV ]
411 ± 44 M eV
422 ± 64 M eV
387 ± 52 M eV
34, 13 %
33, 45 %
35, 75 %
χ2 /ddl
1, 175/2
0, 775/2
1, 232/2
T"< ( % ! % &"
B % 114%2 % B & % % % 80 %"
5 ' ' H0
H0 % 7' Y"T": Q % 6" # Q % % H0 → Σ− p $ Σ− M J5 5K M Λ 7% $ Y"WW:" H0 → Ξ− p ' ! < Ξ− $ % % 3 % 3 %" % ! M % " H0 → Λ p π − H0 → Λ Λ ∼ 500 k % ! 7% T"W:"
- H0 → Λ p π − T [MeV]
0+
!
-
540
[0%-14%], |y|<0.75
520
500
Ω+Ω
480
conf. level 1σ
460
conf. level 2σ
T"T< 0 1 σ 1 2 2 σ 1 2 % %
Ω− + Ω̄+ 440
420
400
380
360
340
0.4
0.5
0.6
0.7
0.8
0.9
dN/dy
T"W< ( H0 ) 1dca2 % 1pvx2 "
1pt2
D dcaH0,pvx
dcaπ,pvx
dcap,pvx
dcap,π
dE/dx
ptH0
Λ
dcaΛ,H0
% 7:
<
>
>
<
>
<
>
∈
≤
0, 6 [cm]
0, 7 [cm]
0, 7 [cm]
0, 5 [cm]
31
3σ 7π : 2σ 7p:
0, 5 [GeV /c]
1115, 68 ± 7 [M eV /c2 ]
1, 7 − 5, 2 × dcaΩ,pvx + 4, 15 × dca2Ω,pvx [cm]
S"T" @ Q 6 T"W T""Y" -
( ' Q % 6 Ω
" > ' G $
'8 $ $ % H0
Λ" > Ω % Λ ± 7 M eV Q % "
@ $ T"X % 6 "
# ' % '
% % " # % ' % 7% $ S"WX: ' % % " @ ;! Λ Λ % H0 '" C M
Λ p π − 72, 196 GeV : Λ Λ
counts
+ $$ 0
700
600
500
400
T"X< * H0 → Λ p π− 300
200
100
0
2.1
2.15
72, 231 GeV :" -
<
2.2
2.25
2.3
2.35
2.4
2
M( Λ ,p, π ) [GeV/c ]
• Λ • Ξ− M % _
"
counts
I % M 6 % % S"S""
@ Λ Λ 6 Λ $ M % " % Y"T" ' ' ' M % Λ % Q"
@ $ T"U % ' ' " >
"
60
50
40
T"U< * H0 → Λ Λ
30
20
10
0
2.1
2.15
2.2
2.25
2.3
2.35
2.4
2
M( Λ ,Λ ) [GeV/c ]
0,
!
-
5 ' 5 H0
I 6 6A % $ T"X " - C 7 "" [2, 200−2, 222] GeV /c2 : 6A ' < 865 ± 29" @ % 876±30" R % " >$ H0 ' Q ' " R 7'"
S"X: 3σ H0 → Λ p π − % 7% T"W: % < 3, 9 10−1 " R % 3, 9 10−1 H0 7 % % : >> 130 GeV $ "
( %)
! ) : ! ! 3 ) 9 * ? 5 ))
F ) T )
:! !
0.
08
!
, $ & @ % J 'K # % ! % " @ % 6! " Q % % % % " @ Ω % H0 % M " % % $"
0 % ! % W"Y" # ' % ! ' ! "
#$ % % 6 "
# Q 6 6! " # % % '"
9
Ω ( /01-
Q ! % Ω
" # 6 L Λ
√
\@> @0R] Ξ \>D @>R] sN N = 130 GeV Ω "
# L M % % [0 − 11 %]" - % % T"Y" " Q % ' "
% 6 6 J K " - ( 6 6 M % " - 6 Q " # 6 % M M Q " ` 5 u d 6 ; 5 % 6 " % √
\>[email protected]] sN N = 130 GeV Q % X"W"
C 7|y| < 0.5: Ω ( $ % 7|y| < 1.0:
" % ' " # % J 6'K ( % M 1" @ $
, !
$ & |S|
*
# 1
Λ/Λ = 0, 69 ± 0, 01
X"W< 0/
2
+
Ξ /Ξ− = 0, 83 ± 0, 04
3
+
Ω /Ω− = 0, 95 ± 0, 15
" 9 H 9 ! !
Ratio
X"W % X"W 6 O>U" 0 6 % 6 M 6 ' "
1.4
RHIC: STAR 1.2
CERN SPS: WA97 -
1
0.8
0.6
0.4
0.2
0
1
+2
Λ /Λ
Ξ /Ξ -
+3
Ω /Ω -
X"W< " 9 H 9 √ ! % B "√ sN N = 130 GeV ' % 67J sN N = 17, 4 GeV D Q ! " ' % "
& 6 ' "
9"
& ? ! & @% 6L 6 ! 5 \?& +&>V]" D ! ' 5 % 6 6" - ( 0
!
, $ & 6 X"W %<
+ ¯
Λ(uds) Ξ (ds̄s̄)
× −
¯
Ξ (dss)
Λ(ūds̄)
+
Ξ− (dss) Ω (s̄s̄s̄)
× −
+ ¯
Ω (sss)
Ξ (ds̄s̄)
=
=
D
K + (us̄)
K − (ūs)
D =
7X"W:
K
1.092 ± 0.023" 0 @ K
−
% % Ω<
+
+
Ω (s̄s̄s̄)
Ω− (sss)
Λ(uds)
×
¯
Λ(ūds̄)
=
+ ¯
Ξ (ds̄s̄)
Ξ− (dss)
% 2
7X":
+
Ω (s̄s̄s̄)
Ω− (sss)
=
+ ¯
K + (us̄) Ξ (ds̄s̄)
×
K − (ūs) Ξ− (dss)
7X"Y:
@ X" X"Y % 1, 1 0, 94 +
% Ω /Ω− 7% T"S"W: " @
% ! D = 1, 14 \?&]"
& ! L 7 Ω: " ! 6! " # % 6! 5 5
\[email protected]?T [email protected]?] \?&]"
% % W"Y D ! % ' ' ! ' ' X"S<
D = λ2u .λ−2
s
=
e(2µB −6µS )/3T
7X"S:
( % 7 µs = 0: D 1.19"
& ! % Q $ % 6 ! 6 L " * Ω ! 0.898 \>BW] ! J 'CK 0.85
\+*0]" I Q 6
% " E Q ' 6 "
? ! ! & @ B/B ' $ '" - % "
@ ! " R 6 !
" B/B
' C "
, !
$ & # # Q % 6 7µB 250 M eV :
7µB 50 M eV 130 GeV : 1/5"
# M " - µB = 0 ' 6 " - 'C $ X" \+W]"
early universe
temperature T [MeV]
quark-gluon
plasma
250
200
LQCD
RHIC SPS
Bag Model
150
AGS
100
SIS
50
Dilute Hadronic Medium
nπ=0.34 /fm3
nb=0.038 /fm3=1/3 n0
0.2
0.4
0.6
nb=0.12 fm-3
atomic
nuclei
0.8
1
X"< * ! ) % % B "
) µB 0 ' ! % ! %
1 2 3 ! F 1 2
Dense Hadronic Medium
3
nπ=0.5 /fm
nb=0.38 /fm3=2.5 n0
neutron stars
1.2
1.4
baryonic chemical potential µB [GeV]
@ % 'C B/B % ! W"Y" @ 6
% T"S"Y % 0, 32 ± 0, 09 Ω +
0, 34 ± 0, 09 Ω X"" @ $ D X"< ) % !
Ω− Ω+ % \ ]
* & % [GeV /c]
% [GeV /c2 ]
|primvtxz | < 100
0 → 14%
|y| < 0.75
pt > 0.5
0.2 < Mt − MΩ < 2.0
6 \>B] \>B] ! !
, $ & +
Ω /Ω− Ω− /π − "
0.003
1.2
Ω/ Ω
1.1
Ω/ π-
0.0025
1
0.002
0.9
0.0015
0.8
0.001
0.7
0.6
150
µ b = 30 MeV
µ b = 60 MeV
160
0.0005
170
T (MeV)
180
0
150
190
µ b = 30 MeV
µ b = 60 MeV
160
170
T (MeV)
180
190
X"Y< 5 ' "
)' Ω
1 ! )2 1 2 % )' ' B "
µB 1 2 ' 1 2
+
/Ω−
Ω− /π −
! 6L % !< T
µB " @ % T 170 M eV µB 40 M eV 7+C " \>BW] T = 174 M eV ± 7 µB = 46 M eV ± 5 = 5,5 "
\+*0] % < T = 165 M eV ± 7 µB = 41 M eV ± 5:"
B/B ! ' Ω− /π − 'C" @ 1.47 × 10−3 \>BW]" > 6 \>@W] π − 6
1.31 ± 0.39 × 10−3 " ! 10% % ' % "
+
@ ! (Ω− + Ω ) ' ' 2 " ' M % $ % ' " # Q % M O>U % % % 6 " @ $ X"S Ω/h− Ω/Ξ ' " 0 % +
% Ω Ω− ! < % "
% Ω % ' ! , !
$ & # %
0.35
Ratio
0.25
0.2
-
Ω /h
-
Ω /Ξ
+
-
Ω /Ξ
Ω /h
-
-
+
+
0.3
0.25
0.15
x10
0.2
-2
0.15
0.1
0.1
0.05
0.05
0
1
10
10
2
1
10
10
2
0
S NN [GeV]
X"S< 5 % Ω % ! 10! ! )2 ' % 9 Ξ !
10! 2 Ω/Ξ ! 1 130 GeV 9 ' 17, 4 GeV 67J2
200 GeV g 17, 4 GeV
+
130 GeV " ! Ω /h− 6 " D ! +
+
Ω /Ξ '% 5 d" 6 ' $ ' " ' % 5 7 d:" & ' M % Ω− /Ξ− = 0.18 ! J 'CK
\+*0]"
? ! $ > & @ ' J V?K % \#DI +#>U ZI1W]" $ % Q \F.0VY] ! % T " @
! 6! 'C M " @ % "
@ ! % Ω $ X"T % Q \>@W >[email protected] >[email protected] />W >[email protected] >[email protected]] \+#>U >V >R-V D>R]" 0 ! $ ! 66 \[email protected]]" # Q % % % %"
Slope Parameter [MeV]
+
!
600
, $ & SNN =130 GeV
SNN =17.4 GeV
X"T< # B "
:( % Ω 1 2 1Ω− + Ω+ 2
400
200
π
K
K* φ
p Λ
0.5
1
Ξ
Ω
0
0
1.5
2
M [GeV/c ]
Q ! ! 6 \ZI1W]" @ ! % % ! Λ Ξ Ω
" % % $ % ' Ξ Λ" 0 ! 6 ! 7 : 6! " %
$ \F.#V] ( 6 % ' " I ! Ω 'C
6! " % (
M 'C ! J C K \*>=]" & J 'CK \+*0 ]
% % X"X 6 ! % "
+
[ % 6 Ω− Ω % M ! %< TΩ− = 422 ± 64 M eV TΩ+ = 387 ± 52 M eV " +
% $ X"T (Ω− + Ω ) T"" I % Ω % ( % % Λ Ξ " D % Ω % % % % J V?K
' ' \E.#W]" I $ % 200 GeV % $ "
$
10
Λ
t
1
d2N
2 π p t Nevts dp dy
,% - Ξ
1
Ω
X"X< * "
-1
10
9 ! . ! ","/
-2
10
-3
10
0
1
2
3
pt [GeV/c]
9$
@ % 6 7 % Ω : 6 "
I % ; 7"'" T": M % % 6 " @ $ T"T
' M " % Ξ $ '% 6 ' 20% \>D]"
@ ' ' % ! 7 : % Q ! ! " [ 6 6 % i
?$
2106 ** @ ! % !
K" @ ' 4 M % J 100 GeV % " # ; 7 % $ T"W 6 % cm:" > % $ % " - % "Y"S 7% $ X"U: % % ' \&R 0R]" - N % Q % % $ ! % Ω "
,
0 !
, $ & ! 4000 Ω % % M $ X"U< " :( "
$ 0! "
& ! ) "
12 % "
% "
"
!
200 GeV
' 10 " % "
@ ! +
Ω /Ω− " % % ' +
7 : M Ω− Ω "
> % $ X"" ' % $ "
@ ! % " @ 6 Λ Ξ B/B ' \>[email protected]]" N Ω Λ Λ 7 Ξ Ξ: Q< 6 % M % % B/B ' "
@ Ω % "
#$ % % Ω % $ % ;, % ' " I $ 6 ' $ % 6 % % \+IB] ' "
& ' ! ' "" D ' Ω M % ! 15 M R>S \+>*] " ! B %* % % H0
! " # " % Ω \[email protected]#]" % $ Q " $ % % '
" > O>U " p − A ,% - $
.
$ " 0 % ' 7' W": X"T W"X<
(
Ω/Ξ|AA
Ω/Ξ|pp
>
! " Ξ/Y |AA
Ξ/Y |pp
7X"T:
>1
% #"
? $ ! > 6 1 :*
& % $ X" ' 6 " @ % C % " @ ' 'C $ ! 6! %" @ ' ' % 5, 5 T eV M C UV" @ % Q
<
> X"Y< 5 ' B √
sN N [GeV ]
4, 9
130
200
17, 4
5500
[GeV /f m3 ]
∼1
∼5
∼3
∼ 10
> % " - 6 ! 4 > 7> @ & # \D.S D.]: "
#$ ! % ' 6 % BD& % \>&>W] M 7% ' \+W]: ' % ! C % % M "
8
!
, $ & ! E & ! T ( /
0
!HI!4 HI
@ 6 ! +
' 6! ' " ` 6 Ω Ω ! 5 A % " & M ! ! ' *.& 130 GeV "
' % % +
+
Ω− Ω " @ Ω /Ω− 6 6! Q 6 6L 6 6 "
- M ' " > % Q % ' "
& Ω ! ' 2 17, 4 GeV 130 GeV M "
@ ! % 6
! % < " ! $
' 6 ! 6! % " - '" + ' 6! " @ ' ! ' % #" < % ! J;K 6! " %
" D 6 Ω ' ! 6 ! ! "
R " @ % Ω/Ξ ' ' " ! Ω 6 % ;, % 6 "
! %i @ % % " @ % Q ' 6 6 % "" 6 % ""
! 6 % % 6 . H0 → Λ p π " R % 10−2 % " 7∼ 107 :
% " I 6 $ ' % 6 " @ H0 → Λ Λ % '" % ! % "
! 6! " - % ! " % ! %" 0 "
* 1
%
-
@ % p = (E, p) ' R"
D % @C <
p2 = E 2 − p2 = M 2
& %<
% Mt 7 M⊥ : $ !
E 2 = M 2 + p2
= (M 2 + p2x + p2y ) + p2z
= Mt2 + p2z
Mt =
p2x + p2y + M 2
7>"W:
@ y $ ' @C" % % M ' ' ' R ' R <
y|R −→ y|R − tanh−1 (β)
% β = vc R R" @ % ' % ! z <
p=
E = Mt cosh y
(pz = Mt sinh y, px , py )
p
> ( z Mt sinh y
pz
=
= tanh y
E
Mt cosh y
' <
y = tanh−1
pz
E
<
y =
1 E + pz
ln
2 E − pz
7>":
%
+
!
D θ ' % ' "" cos θ =
1
θ
γ <
θ
y ≈ − ln tan
2
pz
p 1
( p
M 7>"Y:
= η
( η y "
0 ! ' <
1 1+β
ln
2 1−β
y =
%< ET OT = EC + EM (100 + 1)GeV /u < γ =
<
ET OT
EM
101 β =
1 − γ −2 ymax 5, 3
1"
!
&
@ %" > 6 6 <
E
d3 σ
dp3
= E
d2 σ
2πpt dpt dpz
R % % pz = M t sinh y dpz /dy = Mt sinhy = E " & < dpz = Edy $ E <
E
d3 σ
dp3
= const
1 d2 N
2πpt dydpt
∞
= const mt
(∓)n+1 K1 (n
n=1
mt
)
T
( K1 ' + $ E %" 0 % %<
1 d2 N
2πpt dydpt
∝ e−
mt
T
7>"S:
# >"W pt dpt = mt dmt <
1
d2 N
2πmt dydmt
∝ e−
mt
T
7>"T:
@ % mt M 6 % 7x = mTt u = x du = dx dv = e−x v = −e−x :<
dN
dy
dN
dy
= 2πA
= ...
∞
mt e−
mt
T
dmt
m0
= 2πA(T m0 + T 2 )e−
m0
T
7>"X:
% ) 5 $
@ A M >"X >"T<
1
d2 N
2πmt dydmt
mt
T
= Ae−
% A =
m
dN/dy
− T0
e
2π(T m0 + T 2 )
@ >"U % ! "
@ ! [dN/dy]
! % [T ] 7 M eV : <
1
d2 N
2πmt dydmt
(m −m )
[dN/dy]
− t[T ] 0
e
2π[T ](m0 + [T ])
=
# N % " @ $ %<
1
d2 N
2π mt Nevt dydmt
1$
(m −m )
[dN/dy]
− t[T ] 0
e
2π[T ](m0 + [T ])
=
7>"U:
4 @ ' ' 7% $ >"W:" 0 ! p1
(a)
p
//
1
Θ1
p1
−Θ
M
P
2
p
2
p*
1
Primary Vertex
(b)
Θ*1
M
P
−Θ*
2
p*
2
>"W< : ) ! % 1 2
! 12
! Θi ' Θ∗i ' 7i = 1, 2 $ :"
$ % $ "
M 2 = (p1 + p2 )2
=
m21 + m22 + 2(E1 E2 − p1 .
p2 )
7>"V:
,
!
1
& ' 6 ! m1 m2 ! Xi vertex % % M <
MΞ2 = m2Λ + m2π− + 2(EΛ Eπ− − pΛ .
pπ − )
pK − )
MΩ2 = m2Λ + m2K − + 2(EΛ EK − − pΛ .
7>":
2
MΛ,K [GeV/c ]
> ' " @ $ >" Ω− ' 6 ! "
1.9
1.85
1.8
1.75
1.7
1.65
1.6
1.25
1.3
1.35
1.4
1.45
1.5
1.55
1.6
1.65
1.7
2
M Λ,π [GeV/c ]
>"< Ω % )9) V ) ' B Ξ Ω ' @ > 5 ' ' 6 ! Q" 0 % ptarm ' % α $ <
α =
p1 − p2
p1 + p2
7>"W:
( pi ! i " 0 % ' 7R : 7% $ >"W" :<
||
p1 || = ||
p2 || = p
p1 = p cos Θ∗ = p cos Θ∗
p1⊥ = ptarm = p sin Θ∗
E1 =
p2 + m21
7>"WW:
& R p1 = p2 ' 7 % ' R : ' " @
% ) 5 $
.
' R ' @C <
R
p1 = γp1 + βγE1
p1 = γp cos Θ∗ + βγE1
p1⊥ = ptarm = p sin Θ∗
p1 = −p2 <
p2 (p1 − p2 )
(p1 + p2 )
= −γp cos Θ∗ + βγE2
= 2γp cos Θ∗ + βγ(E1 − E2 )
= βγM = P
! <
α = a cos Θ∗ + b
% a =
<
2p1
βM
b =
E1 −E2
M "
7>"W:
# cos Θ∗2 + sin Θ∗2 = 1 % α−b
a
2
+
ptarm
p
2
7>"WY:
= 1
0 $ >"Y % V 0 Xi"
0.25
ptarm [GeV/c]
ptarm [GeV/c]
0.25
0
Ks
0.2
0.15
0.1
Λ
Λ
+
Ω-
0.2
Ξ
0.15
0.05
0
Ω
+
Ξ-
0.1
0.05
-1
-0.5
0
0.5
1
alpha
>"Y< 5 )' "#
! )2 Xi vertex 1Ω Ξ 2
0
-1
-0.5
0
0.5
1
alpha
- V 0 vertex 1Ks0 Λ @ Q % " # >"W" - $
>"W< ! ' p 7M eV /c:
Ks0
206
Λ
101
' 6 Ξ−
139
Ω−
211
8
!
' ! ! $ dE/dx % "
1
+ %
) ' & %
! 0% T W, "*X ! G ) ;, )
/
%0
H3
+ %
\>&>W] G 9 3 - * BD& R% W 7 <LL,,," "LBD&=LL:"
\>+*] "" > " 7R>T :
0 ' - ! ) EHΨ "
#"# ) 5;":#:
6" @" +
+..
7: " VYX"
\>[email protected]] " > "
() +5 , !
R " &" " >
+.0
7W: " SVVS"
\>[email protected]] " > " 7DE>* :
A # 4 5 √sN N = 130GeV A # 6" @" +"
\>[email protected] ] " > " 7DE>* :
AY187N20 # + 9 5 √sN N = 130GeV 6" *%" @" 6 "
\>[email protected]] " > " " 7DE>* :
F" 9 φ # 4 5 √sN N = 130GeV 6" *%" ,
7: SWW7*:"
\>[email protected]] " > " 7DE>* :
F" 9 Λ Λ # 4 5 √sN N = 130GeV 6" *%" @"
8/
7: YW"
\>[email protected]] " > " 7DE>* :
: ! " " 9 √
sN N = 130GeV
4 5 "
6" @" +"
\>=>] D" >' % " 7R>S :
() ;<7 ! ) R " &" " > +%0 7W: " WSS"
\>BB] "" >, " 7O>V :
S * #) 5 L=8 6" *%" @"
8
7: " YTTYT"
\>1>T] B" >5 % " 7O>V :
208 P b
4208 # 5 ) # ?"F # N>> H; :" 5 ) 5; : # :9 ) 6" *%" @"
.
7WT: " WUWUT"
H3
%
\>@+T] E" > " 7R>S :
( !9 # 6" *%" @"
.
208 P b
4 P b 5 L=8 ; 7WT: " YVWSYVWU"
\>DV] " > "B" O - F #" 6" " " % 7: " WWUW"
\>R-S] #" > " 7R>YX :
# Λ Λ Ξ− Ξ+ :4# N>>" H 1;$I 5 2
6" @" +"
7WS: " SYYSYV"
%.
\>R-V] #" > " 7O>U :
) 6" @" +"
Λ
Ξ Ω 9 #"# L=8 H
7WV: " WX"
+%%
\>RET] =" > " 7O>U :
G ) L77< 67J
R " 6" >
\>V] ." >
φ
/0
7WT: " WYWSX"
j " 7R>S :
#4# L=8 H
R " 6" >
,%8
7WV: " SYWSYS"
\>*] E">" > " 7#VXS :
: ) ! ' - )!) !9 6" *%" /
7W: " *WV*WVYY"
\>I*] " > "
F 6" *%" -
+
?" 7W: " WT"
\+>@V] >"" + C " D"R" O 5 ? " -? ) 9" R " &" " >
+.
9 7WV: " WV"
\+>*] -" + " 7R>S :
: ! # # ; 5 5;";<7
' * 7: LTS"
\+>*Y] " + " 7#VUU :
F !9 ?) : !9
(? ) ) 6" *%" @"
.0
7WY: " X"
\+>DV] D">" + "
F F C + 9 5 " " R " 6"
+
\+>D] D">" + >" -
7WV: " TTYX"
*9 ) - 5* G ) ' -"! ) ,"
6" *%" ,
7: XS"
%
H3
\+>I] O" + "1" B 5 D" + 9 + 9" 5 >" *%" R " " D "
+
7W: " UUW"
\+#>U] &"B" + " 7R>SS :
5 % +!) !9 + 9 5 6" *%" @"
.8
7WU: " VVY"
\+#W] =" + " 6 >" 1j 1" * #" D G ! ) 9 ? LJ L=8 H 6" *%" ,+
\+&>V] >" + - 7: SW"
! 9 ) 9 6" @" +
++
7WV: " SSST"
\+&*] E"D" + k " @% " ?
l6 - ) " 9 ! +5
" 6" B< R " " 6"
8
7: " WTXWWTXX"
\+0VY] "-" +5
+!) 9 " () 9 !
6" *%" -
.
7WVY: " WSWTW"
\[email protected]>] " + C
:! ) ' -"! " R " 6" >
7W: " YW"
,,
\[email protected]#] " + "
; F ) H 0 *" 9 # # "# # "
3 "!! ()9
LTWV"
\[email protected]?T] E"D" + k " @% " ? l6 5S
*9 F G + , 6" @" +
%+.
7WT: " XW"
\[email protected]?] E"D" + k " @% " ? l6 + , ?)
6" *%" \[email protected]] O" + /
0 ! ' 7W: " WTUSWTVS"
@" * # * ?) * 5) D F 7WS:"
\+0/T] B" +6 "
' : ) :C1$2
6" *%" @"
.
! ()9
7WT: " SWXSWU"
\+0/X] B" +6 "
()9 :C1$2 ! ! )9
R " 6" +
+,/
7WX: " SWSSS"
H3
%%
\+*0W] O" + ,5 O" = 5,5 * ) +5 p⊥ : 6" *%" @"
8.
7W: UY"
() F ?) % \+*0] O" + ,5 O" = 5,5 * ! 4 √s = 130GeV ," 6" *%" ,
! "
7: XST"
\+*0 ] O" + ,5 O" = 5,5 " () 9 # pp erp : +5
> 6" " +
%%
7: " UXWUX"
\+IB] 1"> +% " BCC 5 "& B Ω J/Ψ Ψ ( F : +5
6" @" + ++ 7: " WUWYW"
\>&] ." " 7#VX :
G ) +> " 9 )
: % 87I
R " 6" >
,,
)9 9 )
7W: " WUWUX"
\>@X] *" " 7R>TU :
:9 ! ! " #*[email protected] Y 7WX:"
\>] >" ">" D 3 9 ! )9 ) ) 6" *%" ,0
7W: TSX"
\>] >" " >" D -" D
: ! +5 ) * # F LTWS"
\>*W] R" " 7R>TU :
* ) 9 ) 67J ;=J % " 6" B< R " " 6"
.
7W: " YWYX"
\>DX] O" "
9 ) +S:"$ µ+ µ− ?)
6" @" +
%..
7WX: " TW"
)
\>D] "#" 6 # ! 5 C "
(sN N ) = 130 GeV E I % F&& 7:"
\>@W] " + Dl C
5) ! + : " 5 - E / I % 6 7W:"
\.&U] D">" >"1" 1 (sN N ) = 130 GeV # !" +9 ! F ' - * 6" *%" @"
+%
7WU: " WWT"
%+
H3
:( % ) +5
\.0US] >" *"@" Q 1" "+" E F"=" O 5 '
;? % ) 6" *%" - / 7WUS: " YSUWYST"
\.0US ] >" *"@" Q 1" "+" E 3 9 ) ! )9
6" *%" - 0 7WUS: " TXS"
\@#] " 6 1" * 5)
) ," L N>> 6" *%" ,0
7W: TSV"
\@#] " 6 5)
' :: +5
" 6" B< R " " 6"
8
7: " WTUTWTV"
\0=U] "" " 1 : ) % ! ) 5
+5 ) 9" " 6" B< R " " 6"
%
7WU: " WWUWT"
\-#BUT] E" -B *" @" Q 1" " 1 5 F ) ) !) ) 6" *%" - 7WUT: " XUX"
\-#EVY] "#" -E "=" - 3 ! ) >" *%" R " " D " %% 7WVY: " YTXS"
\-0RVX] "=" - #" B , +"*" . 6 - 9 ) + 9 6" *%" - %+ 7WVX: " YSYSYSSY"
\-*#W] ."" - " . 5 D" 0 5 E" 1" O
# " "!! )9
6" * " %0 7W: " YV"
\-ZIW] >" - ? Z
9 ! ) +5 N>>> ' W > ' 7 <LL '", "" L> 'L WL>#*DL*>.WWX"-=:
\#&DS] D"#" # " 7#VW :
Ξ−
# ) 9 ) :
6" @" +
\#DI] D" #
%
7WS: " YYX"
D" ." % .5 R" Z
( V? !
6" *%" 7WU: *WXY*WXX"
\=&RW] *" >" = " 7O>U :
: ! 9 #"# L=8 H
" 6" B< R " " 6"
.
7W: " YUTYVW"
H3
\=I*] " = %
1" D
C
* :C1$2 9 6" *%" ,
7: TW"
\B>FU] D" B% *" F
5) : 9 5 : ! #4# 5 6" *%" @"
.8
7WU: " WXW"
\B>?] " BCC 5 "& B : # J/Ψ F ; 5 L=8"N>> 6" *%" @"
8%
7W: " WXW"
\B#@XS] " B /" R ) !)G 6 9
O">" + & 7WXS:"
\B*#VV] " B " 1 -." * 5 ." Dm5
5 !"' -" ' ! ' -"! ) 9" 6" *%" -
%8
7WVV: " UUVU"
\.#&] I" . C " ;? : F ) ) 5; 3 #! LS "
\.&] +" .
6 : : * 5) ) :( % DE>* R SU "
\.I0W] " .% "F" *5 D"D" *
#) ) 9 ) 5; :#:
6" @" +
%
7: " WWWX"
\>=UU] *" @" Q
#) : *)9
6" *%" @"
%8
7WUU: " WTWV"
\0R] "B" "" 7DE>* :
S? ) ! :(
" 6" B< R " " 6"
.
7W: " XTWXTV"
\1>.] -"#" 1 D"."1 + 9 ) ) 6" *%" ,0 7W: XTX"
\1>*] =" 1 5* ()9 R " 6" >
,/8
7: " WV"
\1.>V] -" 1 C%
()
EHψ : : 9
R " 6" >
,%8
7WV: " U"
%,
H3
\10VX] " 1 +" a " *' 5 : ! + 9 5 6" * "
+
7WVX: " WXUX"
: ) ! 9 :( 5
\1I.] " 1 " 6" B< R " " 6"
8
7: " WUUWUWS"
\@>] ">"" @ ; : ! # # C " + 9 5 √sN N
130 GeV E ! I % + =
"
\@>R] " @ 5) ! Q # L$> 4 5 ) + 9 5 E ! I % > E "
\@>D] +" @ 5
() #)9 ) ( : 7 <LL,,,"" "%LDE>*L
L LE * D
LL Ln " :
\@>D] +" @ 5
() :(" ) R " 6" >
,/8
7: " STSTT"
\@#E] " @ " *' 5 5)
' 0 N>> ) 6" *%" /
7W: " SUTS"
\@#R] +" @5 " 7#*#DR>ST :
#" L=8 H ?) ) 5:
R " 6" >
7W: " YY"
,,
\@&1S] -" @ 5
( - G ! ) :( * ! ) A G F)
DE>* R VU WS"
\@0R] ." @
F" 9 + 9 5 # 4 5 ) E ! I % ' @ > 7:"
\>BW] " +C -" 1" * " D + " +5
6" @" + 8 7W: " SWSX"
\>B] -" )
' +5
" 6" B< R " " 6"
\>B] -" # 5 "
8
7: " WUSTWUT"
H3
%.
\>*] D" O" O O" B" 06 : ! :( " C DE>* R U W"
\>*V] D" A> :( (#5
DE>* R YXU WV"
\0*V] -"" () #+;Q % +5
R " 6" >
,%8
7WV: " TXTTX"
\[email protected]] +" a #)9 :! ) ' -"! * " " 6"
8
7WT: " XWWXYX"
\[email protected]@V] /" 0 G ? 9 :: :#: !
R " 6" >
,%8
7WV: " WTX"
\0*RV] I" 0 5 =" *"" O +!)" !9 ) 9" )99 ) 6" *%" @"
,%
7WV: " XSWXSS"
\>B] D"-" B"O" .Q *"D" @ *"@" *6 "@" E E" I,
5 9 ! 9 +5Z
6" *%" , 7: SX"
\&R] O" 5 % :( +5
E ! I % R "
\+W] " +C " D # ' ) 5* #) 3 9
" 6" B< R " " 6"
8
7: " WUWWUWS"
\*>=V] " *' 5 +" a : ! # ) -" # 6" *%" @"
+8
7WV: " WXXWX"
\*>=] " *' 5 " @ : + , ; 5 6" *%" @"
\*>U] *" *
8
7: " SXTSXV"
B" '6 " O
) ! R " 6" >
,.
) ) ) 7WU: " SUST"
\*>/] *" @" *6 *" D" @
F :F F 5 :(
DE>* R SW "
\*#E] =" * !
() :( & ) R " 6" >
,/8
7: " SVSWW"
%8
H3
\*0D] E" *
+5 # R " 6" >
,/8
7: " YV"
\D>R] @" D " 7O>U :
( ! 9" ! #"# L=8
H
R " 6" >
,,
7W: " SVWSVS"
\D>E] ." DC
+5 +5 #)9 # R " 6" >
++
7W: " YUWY"
\D>I] >"" D 6
( - G ! ) :( ! ) A G F)
<LL,,,"" "%LDE>*L
LL1
LD1
" 7:"
\D.Y ] " D Q " +" -% >" B " B ." Dm5
: ! ) 6" *%" @" . 7WY: " WYVWYYW"
\D.] " D Q+ *" ." D
* 9 ?) : ! () 6 - ; * 9 C ! :C1$2 :99
+? G () + 9" 5 6" *%" @"
8+
7: " SYTSYV"
\D.Y] #" D I" . C
)99 6" *%" +.
! )
7WY: " WUYVWUT"
\D.S] " D 5'
() 5 ) 9" % ) 5; +5
R " 6" >
,,
7WS: " YWWY"
\D.] " D 5'
+ 9 ) +5 #)9 % ! R " 6" >
,/8
7: " VUT"
\D.I] #" D 65
(?" ! ' )!) !9 ) 9 6" *%" @"
,8
7W: " YUYU"
\D0VU] E" Dm " % ? " ) ) 6" *%" -
%,
7WVU: " WSW"
\[email protected]] " D '5 " .% "F" *5
F ! " )99 #" 6" " ,
7WV: " TTTYX"
\D&X] " D @" B ." Dm5 " B " 1 " 5 : ! F ? µ/T 6" *%" @" ., 7WX: " WUUXWUU"
)
H3
%/
\DI&W] " D 5 & ! ) %"
:(
E ! I % @ DE*>D+0I*B W"
\E>1W] ." E5 7 #YUY:
S * +9 6" *%" @" 8. 7W: WT"
6 He
ΛΛ
\E#>W] -" E6 " @ #" F" D 65
G ? ) :#: +5 -" # :! 6" *%" @"
8,
7W: " SUVYSUVX"
\E.#W] *"@" E , " D " *' 5 G ' - +5
" 6" B< R " " 6" . 7W: " UWTU"
\F.#V] ." % .5 ." D R" Z"
9 F ! + G,"S +!) !9 ; 5 6" *%" @"
8
7WV: " TUXSTUXU"
\F.0VY] @" % .%
(? # ! ) ) )!)" !9 1' "
V ! 2
?" 6"
" YWV 7WVY:"
!
\O>V] " O
()
*" *
?" R " 6" >
\O>] " O
,%8
7WV: " WUWWV"
F ) R " 6" >
,//
7: " WWU"
\O>RW] Z"R" O " B6 6
+E; F "5 & 6" *%" -
++
7WW: " YTWYTWX"
\O#+W] " O () ;=N ! )
" 6" B< R " " 6"
\O#*Y] 1" O
: ! !
6" * "
%
.
7W: " SVUSS"
) ;C: + " 7WY: " VU"
\O#*W] 1" O
( +5 ? " 6" B< R " " 6"
.
7W: " XTXYS"
\O&#] I">" O : "
R " 6" >
9 +3( :#: +5
,,
7W: " XTUS"
+0
H3
\O&@US] 1"B" O 5 0 ' -
6" *%" -
0
7WUS: " SSTST"
\ZI1W] R" Z " 1
+ ," )!) !9 R " 6" >
,/8
7: " YXYWY"
\/>W] #" E" / #) F # 4 5 ) + 9 5 E ! I % ' @ > 7W:"
\/DUU] " D E" / #)" , 5) - ! ! !
R " &" " >
\?&] " ?
+
7WUU: " YUUY"
l6 E"D" + k E"mo " @% - 6" @" +
+.
5; :#:
7: " SYSX"
\?&] " ?
l6 " @% E"D" + k
G ' - " + O5 [5 p . -6
LTW"