close

Вход

Забыли?

вход по аккаунту

код для вставкиСкачать
Технологическая карта урока
Преподаватель: Попова Елена Николаевна
Дата: 13.10.2014
Предмет: математика
Класс: 5
Тема урока: Уравнение
Тип урока: изучение и первичное закрепление новых знаний и способов деятельности
Длительность: 40 минут
Технология развития критического мышления через чтение и письмо
Цель: организовать деятельность по восприятию, осмыслению и первичному запоминанию новых знаний и способов
деятельности.
Дидактические задачи (цель учебного занятия):
формировать умение решать уравнения; способствовать развитию математической речи, оперативной памяти, произвольного
внимания, наглядно-действенного мышления; воспитывать культуру поведения при фронтальной работе, индивидуальной
работе.
Формировать УУД:
Личностные: способность к самооценке на основе критерия успешности учебной деятельности.
Регулятивные: умения определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность
действий на уроке; работать по коллективно составленному плану; оценивать правильность выполнения действия на уровне
адекватной ретроспективной оценки; планировать свое действие в соответствии с поставленной задачей; вносить
необходимые коррективы в действие после его завершения на основе его оценки и учета характера сделанных ошибок;
высказывать свое предположение.
Коммуникативные: умения оформлять свои мысли в устной форме; слушать и понимать речь других; совместно
договариваться о правилах поведения и общения и следовать им.
Познавательные: умения ориентироваться в своей системе знаний (отличать новое от уже известного с помощью учителя);
добывать новые знания (находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную
на уроке)
Планируемые результаты обучения:
Предметные: уметь решать уравнения.
Личностные: уметь осуществлять самооценку на основе критерия успешности учебной деятельности; осознавать
ответственность за общее дело; понимать причины успеха/неуспеха в учебной деятельности.
Метапредметные:
регулятивные - уметь определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность
действий на уроке; работать по коллективно составленному плану; оценивать правильность выполнения действия на уровне
адекватной ретроспективной оценки; планировать свое действие в соответствии с поставленной задачей; вносить
необходимые коррективы в действие после его завершения на основе его оценки и учета характера сделанных ошибок;
высказывать свое предположение;
коммуникативные - уметь оформлять свои мысли в устной форме; слушать и понимать речь других; совместно
договариваться о правилах поведения и общения в школе и следовать им; уметь выражать свои мысли с достаточной
полнотой и точностью;
познавательные - уметь ориентироваться в своей системе знаний (отличать новое от уже известного с помощью учителя);
добывать новые знания (находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную
на уроке); уметь осознанно и произвольно строить речевое высказывание; самостоятельно создавать
алгоритмы
деятельности; извлекать из математических текстов необходимую информацию; использовать знаково-символические
средства; строить логическую цепочку рассуждений
Ресурсы
-
Учебник - Виленкин Н. Я., Жохов В. И., Чесноков А. С., Шварцбурд С. И. Математика 6 класс: Учебник для
общеобразовательных учреждений. - М.: Мнемозина, 2011.
- презентация «Уравнение».
Организация пространства: индивидуальная работа, парная и групповая работа.
Этапы учебного
занятия
1-й этап ВЫЗОВ.
«Организационномотивационный»
Цели:
- актуализировать
требования к ученику с
позиций учебной
деятельности;
- создать условия для
формирования
Содержание учебного
материала
Слайд 1.
«Не мысли надобно учить, а
учить мыслить» (Э. Кант.)
Слайд 2.
- Рассмотрите записи, на
какие группы можно
разделить записи.
Объясните свое решение
Деятельность
учителя
Устанавливает тематические рамки
у + 35;
к – 15;
d – 27 = 45;
17 + b;
с + 16 = 31
Методы и
приемы
учеников
обучения
Проговаривают тип
Мозговой штурм
урока и называют ша- (индивидуальный
ги учебной деятельно- парный,
сти.
групповой)
Выполняют задание.
внутренней потребности
учеников во включении
в учебную деятельность;
- установить
тематические рамки
Внимательно их изучите и Учащиеся
ответьте на вопросы.
внимательно смотрят
на записи, отвечая на
вопросы:
На какие две группы
Выражения,
можно разделить
уравнения,
написанное?
Интересна ли для нас 1
Нет.
группа: выражения?
А вторая? Почему?
Да, потому что
уравнения можно
решить.
Кто догадался, какая тема Ребята объявляют
сегодняшнего урока?
тему урока и
записывают в тетради:
« Уравнения».
Исходя из названия темы, Формулируют цель:
давайте сформулируем
познакомиться с
цель нашего урока.
разными видами
уравнений; научиться
их решать.
Для того чтобы достичь
Формулируют задачи:
цели урока, какие задачи - вспомнить основные
нам надо поставить?
понятия, свойства,
которые можно
отнести к уравнениям;
- изучить материал
учебника по этой
теме;
- внимательно
слушать учителя;
- делать необходимые
записи в тетрадях.
Организует фиксирование Отвечают на вопросы; Прием “Корзина
Актуализация и фикси- Слайды 3-5.
Повторение нахождения
индивидуального затрудидей”
рование
неизвестных компонентов нения, выявление места и
индивидуального
затруднения в пробном арифметических действий - причины затруднения во
сложения и вычитания
внешней речи, обобщение
действии; выявление
актуализированных
места и причины
знаний:
затруднения.
Цели:
Как найти неизвестное
Надо из суммы
- создать условия для
слагаемое?
вычесть известное
выполнения учащимися
слагаемое.
пробного учебного
Как найти неизвестное
Надо к разности
действия;
уменьшаемое?
прибавить
- организовать фиксировычитаемое.
вание учащимися
Как найти неизвестное
Надо из
индивидуального
вычитаемое?
уменьшаемого
затруднения;
вычесть разность.
- выявить место (шаг,
операцию) затруднения;
- зафиксировать во
внешней речи причину
затруднения
2-й этап
ОСМЫСЛЕНИЕ
СОДЕРЖАНИЯ
Поисковоисследовательский этап
Цели:
- создать условия для
составления совместного
плана действий;
- организовать уточнение
следующего шага
учебной деятельности
Работа с учебником:
п. 10, с. 58-60.
Слайд 6
Если в равенство входит
буква, то равенство может
быть верным при одних
значениях этой буквы и
неверным при других ее
значениях.
Уравнение – равенство,
содержащее букву, значение
которой надо найти.
Значение буквы, при
котором из уравнения
получается верное числовое
равенство, называют корнем
уравнения.
Решить уравнение – значит
Организует уточнение
следующего шага учебной
деятельности, составление
совместного плана действий
Составляют и прогова- Прием “Пометки
ривают план действий на полях”
с помощью учителя.
Выполняют задания в
тетрадях
Равенство
x + 3 = 7 верно при
x=4
и неверно при x = 2.
Корнем уравнения
x + 2 = 5 является
число 3.
найти все его корни (или
убедиться, что это
уравнение не имеет ни
одного корня).
Слайды 7-8
Разделите уравнения на
группы, в которых
неизвестный компонент
находится одинаковым
действием
1) x + 12 = 45
2) b – 19 = 60
3) 256 – (y + 112) = 25
4) 60 = b + 19
5) k – 0 = 92
6) 162 = c – 47
7) 154 + x = 154
Слайды 9-10
Решим уравнение
(х + 15) + 14 = 56 двумя
способами
1-я группа
1) x + 12 = 45
4) 60 = b + 19
7) 154 + x = 154
Почему уравнение под
номером 3 не вошло
ни в одну из групп?
1-й способ
Сначала найдём 1-е
слагаемое х + 15:
Найдём неизвестное
слагаемое х:
2-я группа
2) b – 19 = 60
5) k – 0 = 92
6) 162 = c – 47
1-й способ
(х + 15) + 14 = 56
х + 15 = 56 – 14
х + 15 = 42
х = 42 – 15
х = 27
2-й способ
Сначала упростим
выражение, стоящее в
левой части уравнения,
использовав
сочетательное свойство
сложения:
Затем найдём неизвестное
слагаемое х:
Слайды 11-12
Решим уравнение
(х + 65) – 28 = 45 двумя
способами:
2-й способ
(х + 15) + 14 = 56
х + 15 + 14 = 56
х + 29 = 56
х = 56 – 29
х = 27
1-й способ
1-й способ
Сначала найдём
(х + 65) – 28 = 45
неизвестное уменьшаемое
х + 65:
х + 65 = 45 + 28
х + 65 = 73
Найдём неизвестное
х = 73 – 65
слагаемое х:
х=8
2-й способ
2-й способ
Сначала упростим
(х + 65) – 28 = 45
выражение, стоящее в
х + 65 – 28 = 45
левой части уравнения,
х + 37 = 45
используя свойства
вычитания:
Найдём неизвестное
х = 45 – 37
слагаемое х:
х=8
Слайд 13
Физминутка
Реализация
построенного проекта и
первичное закрепление
с проговариванием во
внешней речи.
Цели:
- реализовать
построенный проект в
Слайд 14.
Решите уравнения любым
способом:
66 – (х – 13) = 25
(65 – у) + 19 = 48
(х + 14) – 5 = 16
Вновь у нас
Выполняют
физкультминутка,
упражнение
Наклонились, ну-ка, ну-ка!
Распрямились, потянулись,
А теперь назад прогнулись.
Разминаем руки, плечи,
Чтоб сидеть нам было
легче,
Чтоб писать, читать,
считать
И совсем не уставать.
Голова устала тоже.
Так давайте ей поможем!
Вправо-влево, раз и два,
Думай, думай, голова.
Хоть зарядка коротка,
Отдохнули мы слегка.
Организует реализацию
Под руководством
Практическая
построенного проекта в со- учителя выполняют
работа
ответствии с планом,
составленный план
подводящий диалог,
действий.
фиксирование нового зна- Отвечают на вопросы
ния в речи и знаках
учителя.
Фиксируют новое знание в речи и знаках
соответствии с планом;
- закрепить новое знание
в речи и знаках;
- зафиксировать преодоление возникшего
затруднения
Организует фиксирование
3-й этап РЕФЛЕКСИЯ Слайд 15 (рефлексия).
Рефлексия учебной дея1. Сегодня я узнал…
нового содержания,
тельности на уроке.
2. Было интересно…
рефлексию
Цели :
3. Было трудно…
- зафиксировать новое
4. У меня получилось…
содержание урока;
5. Я смог…
- организовать
6. Я попробую…
рефлексию
7. Меня удивило…
8. Урок дал мне для
жизни…
Домашнее задание:
п. 10, с. 58-60,
№ 395, 398, 403
Заместитель директора по УР ________________________ /__Кудинова Н.В. _/
Отвечают на вопросы. Прием “ Толстые
Рассказывают, что
и тонкие
узнали.
вопросы”
Записывают домашнее
задание
Этапы урока
Стадия
«Вызов»
Самоанализ
Возможные риски
Уровень достижения
планируемого результата
Регулятивные действия
- Целеполагание как способность
соотносить то, что уже известно и
усвоено, и то, что еще неизвестно
- Планирование как определение
последовательности промежуточных целей с учетом конечного
результата
Познавательные действия
- Самостоятельное выделение и
формулирование
познавательной
цели;
- Выделение наиболее важной
информации;
- Построение логической цепочки
вопросов.
Коммуникативные действия
- Включаемость в коллективное
обсуждение вопросов;
- Постановка вопросов.
Личностные действия
Развитие
познавательных
1. Ученики не видят, по
какому принципу можно
сгруппировать записи на
доске.
2. Ученики не могут
ответить на вопросы.
3. Ученики не могут
сформулировать цель и
задачи урока
Коррекционная работа
1. Предложить рассмотреть
каждую запись в
отдельности, затем
сравнить их, тем самым
находя отличия и схожести.
2. Учитель на один из
вопросов отвечает сам,
показывает на своем
примере как можно
ответить.
3. Можно подсказать с
помощью наводящих
вопросов.
Стадия
«Осмысления»
интересов, учебных мотивов
Предметные действия
-Воспроизведение (актуализация)
знаний об уравнениях;
-Определение понятий «уравнение»,
«равенство»,
«корень
уравнения»;
Определение
основных
направлений в изучении темы
1. Ученики не могут привести
Регулятивные действия
- Оценка как выделение и
примеры из жизни, где
осознание того, что уже освоено и
встречаются равенства
что еще подлежит усвоению,
осознание качества и уровня 2. Ученики не умеют делать
усвоения
краткие записи (записывают
- Волевая саморегуляция как
целые предложения), на что
способность к мобилизации сил и
уходит много времени
энергии
3. Ученики не знают, как
применять полученные
Познавательные действия
- Поиск и выделение необходимой
знания на практике.
информации;
- Выбор способа действия;
- Умение осознанно строить
речевое
высказывание
в
письменной форме.
1. Учитель может привести
один из примеров, с
которым сталкиваемся
повседневно.
2. Потренировать учеников
сворачивать информацию
на отдельных
предложениях
3. Еще раз обсудить
задание, вспомнить правила
и разобрать один из
примеров.
Стадия
Рефлексии
Коммуникативные действия
- Умение слушать и вступать в
диалог
- Инициативное сотрудничество в
поиске и сборе информации
Личностные действия
Развитие
познавательных
интересов, учебных мотивов
Предметные действия
- Построение нового знания об
уравнениях
- Анализ информации по теме
«Решение уравнений»
Регулятивные действия
- Оценка как выделение и
осознание того, что уже освоено и
что еще подлежит усвоению,
осознание качества и уровня
усвоения
Познавательные действия
Умение осознанно строить речевое
высказывание в устной форме
- Выделение и формулирование
познавательной цели
1. Ученики затрудняются с
помощью одного предложения
выразить свои мысли и
подвести итог своей работы.
2. Ученики не знают, где именно
искать информацию по данной
теме, если возникнут
затруднения при выполнении
домашней работы
1. Привести пример,
выслушать тех учеников,
которые справились с
заданием.
2. Обратить внимание
учеников на п. 10.
Коммуникативные действия
- Включаемость в коллективное
обсуждение вопросов
- Постановка вопросов
- Умение аргументировать свою
точку зрения
Личностные действия
- Оценка действий человека
- Развитие познавательных интересов, учебных мотивов
Предметные действия
Применение
знаний
об
уравнениях
при
решении
практических заданий
Способность
использовать
полученные знания на практике
1/--страниц
Пожаловаться на содержимое документа