close

Вход

Забыли?

вход по аккаунту

Многогранники в науках

код для вставкиСкачать
Многогранники в
науках
Правильных многогранников
вызывающе мало, но этот весьма
скромный по численности отряд сумел
пробраться в самые глубины
различных наук.
Л. Кэррол
Нечаева
Ирина
Гипотеза:

Мы думаем, что правильные
многогранники встречаются во многих
науках.
Цели и задачи

Выяснить в каких науках встречаются
правильные многогранники
Икосаэдр
Тетраэдр
Додекаэдр
Куб
Октаэдр
Многогранники в:

Химии

Физике

Биологии

Философии

Астрономии
Многогранники в химии

Кристаллы некоторых знакомых
нам веществ имеют форму
правильных многогранников.
Кристаллы
поваренной соли
имеют форму
куба
куб передает форму кристаллов
Кристаллы пирита –
додекаэдра
поваренной соли NaCl,
монокристалл алюминиево- калиевых
квасцов имеет форму октаэдра
Модель молекулы метана CH4 имеет
кристалл сернистого колчедана
FeS
форму правильного тетраэдра, в
четырех вершинах которого находятся
имеет форму додекаэдра
атомы водорода, а в центре - атом
углерода.
сурьменистый сернокислый
Многогранники в физике

Некоторые атомные ядра могут
иметь вид правильных
многогранников со
округлѐнными
углами.

Кристаллы являются
природными
многогранниками
Многогранники в биологии

Вирусы имеют форму икосаэдра.
Его геометрические
свойства позволяют
экономить генетическую
информацию. Правильные
многогранники - самые
выгодные фигуры. И
природа этим
широко
пользуется.


Форма одноклеточных
организмов - феодарий, точно
передает икосаэдр. Икосаэдр
имеет наибольший
обьем и наименьшую площадь
поверхности. Это геометрическое
свойство помогает морскому
микроорганизму преодолевать
давление водной толщи.
Так же их можно наблюдать
среди форм микроскопических
морских организмов,
известных под названием
Феодарий
Радиолярий
Многогранники в
философии
 Названия правильных многогранников
пришли из Греции. В дословном
переводе с греческого "тетраэдр",
"октаэдр", "гексаэдр", "додекаэдр",
"икосаэдр" означают:
"четырехгранник", "восьмигранник",
"шестигранник".
"двенадцатигранник",
"двадцатигранник".

Платон (427347 годы до
н.э.)
Этим красивым телам посвящена 13-я
книга "Начал" Евклида. Их еще
Многогранники в
астрономии
 Важное место занимали
правильные
многогранники в системе
гармоничного устройства мира
И. Кеплера. По его мнению,
сферы планет связаны между
собой вписанными в них
правильными многоугольниками.
Поскольку для каждого правильного
многогранника центры вписанной и
описанной сфер совпадают,
то вся модель будет иметь единый центр,
в котором будет находиться Солнце.
Тайна мироздания
по Кеплеру
В
сферу орбиты Сатурна
вписываем куб, в куб –
сферу Юпитера.
В
сферу Юпитера
вписываем тетраэдр, в
тетраэдр –сферу Марса.
В
сферу Марса вписываем Иллюстрация
Кеплера из его книги
додекаэдр, в додекаэдр –И.«Тайна
мироздания»
сферу Земли.
1596 год

Математические
расчѐты
показали, что
совпадение с
данными Коперника
по радиусам планетных
орбит
было поразительным,
но всѐ-таки не совсем
точным. Однако, эта
работа
привела к открытию
истинных астрономических
законов- трѐх знаменитых
законов Кеплера, на базе
Вывод:

Мы выяснили, что правильные
многогранники встречаются во многих
науках. Мы привели примеры
некоторых из них. Многогранникисамые выгодные фигуры. И природа
этим широко пользуется.
Источники информации
1/--страниц
Пожаловаться на содержимое документа