close

Вход

Забыли?

вход по аккаунту

;doc

код для вставкиСкачать
IV - 22–23 2014 .
2014
!" 664-03
## 36+ 36-9
66
!"## "$$!:
$ –
* :
66
, %
, & '
(
).$.
/
(.(.;
..;
5 /..;
# ..;
7 *
8.(.
##"%!"##& '!(%& )*#"$"!! % "+$,)! *-##! !
'--+")! ,$/,"*"56,)%##"" ,&-/: < IV =.
.-. %. 22–23 < 2014 . / .
.
, .
. . .-. ;
?. . - . , %. ).$. (
. – : 5.8.. $<
, 2014. – 352 .
ISBN 978-5-9631-0284-8
( <
% < .
=, <? , D < <.
## 36+ 36-9
!" 664-03
ISBN 978-5-9631-0284-8
¤
! E$ 8F, 2014
¤
5.8.. $<
, 2014
7
7
8 9;; 8
« 8 <
8=
87 »
.
.1, ..2, ..2, ..2*
1
, 2
! – " #
#$" #$, ,
e - mail: [email protected] kubannet.ru
* %, " $ «F < »,
DD? < , , G .
'
< <
H%%
«F
<
»
D
? G
< < .
DESIGN OF COMPLEX MEASURES FOR EFFECTIVE
IMPLEMENTATION OF KRASNODARSKY KRAI LEGISLATIVE ACT
«ABOUT PRODUCTION OF ORGANIC AGRICULTURAL PRODUCTS IN
KRASNODARSKY KRAI»
Petrenko I.M.1, Lisovoy V. V.2, Viktorova E. P.2, Matvienko A. N.2*
1
Legislative Assembly of Krasnodar Region, Russia
2
SSI Krasnodar Research Institute of Agricultural Products Storage and Processing
of Russian Agricultural Academy,
Russia, e - mail: [email protected] kubannet.ru
* Corresponding person
Abstract
Main regulations of regional legislative act «About production of organic
agricultural products in Krasnodarsky Krai», including subject of regulation and act
purposes, main conceptions and determinations and also basic principles of organic
products productions and requirements have been represented.
Complex measures for effective implementation of Krasnodarsky Krai
legislative act «About production of organic agricultural products in Krasnodarsky
Krai» for the purpose of organic food products and products of processing production
with high parameters of quality and safety have been designed.
3
5 D , 7 ?
, D D? , 7
< <
<
< &
<
5
< < (
<)
8.. Q< «F < »
R 2826 – & 1 2013
, 1 2014
.
F
< <
< ?
,
< % .
T H
? H
.
& <, , ? - H
.
( , <
% :
- - H
?D < ( D<
), <
( D< ), , <
,
? (
<
,
, , , , ),
-<
%
(
-, ) <
, D?
;
-
- , < ?,
< , <, %
< ;
- ? - ? , < ,
? < ? ( D< ?
).
( G .
< < D?:
4
- H – <
<
< D
- < ;
- <<
D? ;
- ?
;
- - <
%
<
<;
- ? ? .
F
UD:
- ;
- ;
- () ?
.
Q
%
<D < %, '
=
% .
5
?< &
% <
< D?
D %D:
- <
;
- ;
- ;
- .
$ H
< <
?
< < Q<
D Q'
Q5 022/2011 «$? G <
», '7< < Q<
D 9 2011, R 881.
$< &
< ? : , <, %
<
<
.
" H%%
«F < » R 2826 – &, D
< < <
< D? <
.
1.'
<D D <D << < < :
5
- < ;
- , < < ?
;
- < <, < ?
;
? ?
;
- D D ;
- D D ;
- ? ;
;
- ;
- ?
.
2. '
< <
(H
<), <
.
3. '
– < < , <
.
4. '
<, < .
5. '
< <, <
,
DD? H
, –
< .
6. '
< H
% <, <
.
7. '
< % , ?
D D D ?
, < <
5F
14000.
8. '
< E855$ < E855$ ? .
9. '
< <
? < , D? ' < =
%
(IFOAM), <
%
'.
10. 5
<< < ,
D? H%%
%
< <
6
< <, ?
G «? – ».
11. '
D < – <
? .
12. '
<
?
,
<
, < <
<.
13. '
<<, ? 7
% , ? .
14. '
<
– ?
.
15. $
<
– ? < ,
H
.
F? < <
H%%
&
«F < ».
7
8 1.
8
=8 >633.11:[email protected]:66.022–926.214
J
.1., .1*., .2., !"# .2.
1
& '"# #, !
e-mail:[email protected]
2
& " ". !,
*
%, " <
7. (
D
D <
7, <
D %<
. 8
<
<
.
INFLUENCE ON PROTEIN OZONIZATION WHEAT GRAIN
Lukina G.D1., Kudashev S.N1*., Pushkar T.D2., Solovykh S.I2
1
Odesskaya National Academy of Food Technologies, Ukraine,
e-mail: [email protected]
2
Odessky State Agrarian University, Ukraine
*Corresponding person
Abstract
The effect of different concentrations of ozone on the main components of
wheat. Ozone exposure causes partial degradation of the protein components of the
wheat grain , increasing its solubility and availability of the action of proteolysis
enzymes. Analysis of amino acid composition of ozonolysis products indicates deep
destruction of protein components at high ozone concentrations .
F
< < <D , 7 <. F
< 7 < <, .
#
< <, < . =
H%%
D . 5 7< <
<<
<D? H%% , <
.
9
F
<D %
% U
, < H H%% DD < : <, , , < [1].
( <
D?< 7 G <
<
: , , , D? - %
< [2].
'
< D H%% 7 %
. F
,
%
D <
< (
D 20 <
).
( H
, , ,
D %
, H <
. ( D
< , <
D %<<, <
<
7
.
F
<
% < %
< , , ?
D – %
“
”. <, %<
–
() < . $
H
7
< D? %
( < .).
Q< <, %
< < (, , , ) <<, <
<7 %
< , .
( ? < %
< , 7
< <?, , <. F 7
< [3]. !
, <
<7
<
? , 7 -
% <?, [4].
$%&" '" !
( 7 D .
8 7 (
, <,
.) ? D < 7 (, , %<, ). ( < 10
< < , , , <
[5].
< <
7 < <D <
%, <
D <
, 77 .
( <
% (0,2% ) <
, <
H
% < %<
/
$<
<
<
[6]. ( <
[7].
()!" !
( ? 7 (.1). 8 , ? <7, H
< (<7
, < 27,0%) <
(
<
< ). $ H
<
<
, < 32,5%.
Q 1 – ( <
?
< 7 10</
F
5
10
(
?
F? 5
#
% , % ..
%
% ..
%
.
% ..
<
<
2,18
12,44
1,49
8,49
0,50
2,88
2,18
2,18
12,44
12,44
1,24
1,27
7,09
7,24
0,78
0,71
4,27
4,07
#
<
% ..
%
0,19
1,08
0,19
0,20
1,08
1,13
30
2,18
12,44
1,08
6,18
0,77
4,44
0,32
1,82
Q<
<,
?
<
<
?, D, 7 < < 10 </ 7 5…10 <. Z < 7 (.2)
11
Q 2 – ( <
7 8,8…9,1 </
$
(
, % ..
$
, .
"
<, Q
(< , <
10
15
31,2
29,6
93,0
86,0
0
31,8
89,0
3,54
3,33
3,12
20
28,6
81,0
3,01
2 , < < , 7 <.
#
<
, < 7
7 7 <D?< < %
<< , , 7 G . < 7
< <D <
?
H
<
(.3). $ < 7 . ( <
7
< <
.
$<
< 7 D <
< <, < <
? -7
. D?
<
7 <
, ' <
.4.
Q 3 – < 7
< D 1,67 5
, </
0
5
10
25
(
?
H
,
5
- NaOH 0,2 F
/100
7
1,28
1,67
1,28
1,67
1,28
1,64
1,28
1,61
Q 4 – ( <
?
7 , %.., 10 </ 15 <
$, < , F
&
7 F
7
1
40,12
2
50,06
3
56,68
45,02
50,58
62,80
12
Q, < ,
1
2
3
57,08
62,73
69,30
76,46
76,52
79,00
= 46,06
47,49
67,17
71,54
74,01
84,33
= 52,06
53,28
71,01
71,44
81,05
86,38
D , <
D < , <. Z
<
< <
<
<, 7< H ? <.
$
< <
7 D
< 7 , < 7 7 . $ H
< D , .
Q <
(.5) <
, 77 ,
50% << <
, , ,
<
. 8 %<
D?
< , <, D<
, < <
<<< <
< , % .
Q 5 – < <
<
%
7
< (% ..)
8<
<
7
-+
D<
-
%-
5
<
8<
F
, <
0
5
10
1,55
1,42
1,28
0,98
0,60
0,48
2,2.
2,29
2,14
6,42
7,09
6,75
2,20
3,26
6,7
10,33
F
, <
0
5
10
1,50
1,40
1,25
1,01
0,57
0,80
–
–
–
0,48
0,59
1,06
32,15
0,40
0,69
1,68
17,24
20,16
22,06
10,73
1,73
1,29
0,96
3,97
4,13
3,52
3,70
5,65
0,73
0,52
0,19
0,04
0,33
–
1,78
–
–
0,57
0,58
0,25
0,05
0,69
–
2,36
–
–
0,67
0,60
0,24
0,11
0,41
–
3,25
–
–
2,48
0,60
0,39
0,74
0,76
1,78
–
–
–
2,60
0,76
1,00
0,87
1,50
2,36
–
–
–
2,66
0,68
0,93
1,01
1,80
3,25
–
–
–
13
Q< <, 7
<< < <
< , %<
, <
. (
<<< < D <:
7 7…10 </ < 10…15 <.
""
F
7 < D <
. !<7 < <
% (
<
).
$ <
D < , <.
8 <
7
<
<
<
. #
50%
<< <
, , , , .
+%!-/0 3
1. # 8.(. (
< %<D
H / 8.(.#, 8.(.5 // (^
&
^
^
^.– 2009. – R2. – 5.68–73.
2. _
F.`. Q
<.
Z
D
, H
<
. – 5–
$: F'". – 2000. –294.
3. Q
Q.$. $ H
7 <
/ Q.$.Q
,
)..
, )../, 8.=. =
, (.=.? // =
<
%. < . – 2009. – Q2. – 5.7–14.
4. Q
Q.$. 5 <? <
<7
<
< / Q.$. Q
, )..
, 8.'.,
8.=.=
, (.=.
5. )<
8.. =
<
/
8..)<
, (.(.8<
, .$._
7 .–/ :8
<, 1987– 430.
6. = (.`. =
<
?
/ (.`.=, .F.(7, /.(.
// E
<
^. – 1976.–R6.–5.29–30
7. F5Q 13586–68 =
7.
14
=8 664.046.3; 664.8.004.4
8 7 8
7
=
! .., ") .. *, ') ..
! ()+) #$, , e-mail: [email protected]
*%, " F <
<: < , , ?, <
.
<
<
<
< .
DETERMINATION OF SHELF LIFE CRITERIA OF APPLES IN
STORAGE AT NEGATIVE TEMPERATURE
Avilova S.V., Grysunov A.A.*, Pomaskina N.V.
GNU VNIKHI of the Russian Agricultural Academy, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
Baselines of shelf life of apples at negative temperature such as: the content of
soluble sugars, organic acids, pectin and tannins, the hardness of the peel and pulp,
are defined in this work. The qualitative and quantitative composition of pathogens at
the surface and inside the apples depending on storage temperature was studied.
$
< < < <
. '7 H
< <, <
D?
<
%
D? (<, , <
%) . < H
. $
H
< <
< <<, D? % , ,
<, , < H%%
.
(< H<
< 7 H
< . F
< 15
< %
. < D <
%,
<,
.
$%&" '" !
FU – , ? =
, : «8
», «7
», «$
%
<», «!H», «/
». $
< . Q< : – F5Q, – < 3 ± 1 5. F
93 % 95 %.
T - <
<
,
H%%
<
-<
<
, <
<
< <
?.
%
-< <
? <
< % ?
'8! =5E8 <. .8.Q<.
*
<
<
<
<
< D
D ($5, /: D
- 20, 10, - 0,5, < - 0,05, % < - 0,5,
%
% - 0,6, %
% - 0,4). 5 40% <
(4 </).
()!" !
E
<
< < <.
E< 2012 < .
16
14
12
10
8
6
4
2
"8
"
"7
"
$ "$
%
<"
"!H"
* 6 < < < 3 ± 1 5
'
– E< , %
16
"/
"
"
?
5
$
?
"
?
$
?
5
5
$
?
"
?
"
?
$
?
5
5
$
?
"
?
0
5
«/
», «!H», «$
%
<» <D , , ?. 7 7 , <
H 7D?D < <<.
' D <
<< < ? . F
7
, H <
. <D
? < ?, , ,
, , , ?. E< %
< <,
< < .
D ? ( 7 0,63 % 0,73 %).
F D «<
», < ?D < , , ,
< <, < H. Z
, <, - , , <
, < , ? ,
D?D – .
5 <
< D?< , <7.
Q< , < . #
, -<
<, <, D ?, %
%
. F |7< <
, <7. -
D
(
70 % ), ,
, . $
H
«8
» «7
» , D <
< < <
< .
$
<
< (< 3 ± 1 5) «/
». $
H
%
< <.
5 < < <
%
: , , , , %
, .
7 Penicilium, Botrytis, Monilia, Rhizopus, Gloeosposium. F
< <
< < D < <
?, < %< . F
17
, < < .
Q
<, <
7 < <
<<
<
<<.
< <<
< , < , <
<,
D? .
$
, , - H
< <<
<, D? %< <<
<, <
<<. Z <
<
H%<. , <
<
<<, <. H%< <
<< , , .
( ? < D <, <<
<
<
<<.
Q
<
< «H
%<», <
< ,
<< <.
< «$
%
<» «/
» < , < <
<
<
< .
' 1 2.
Q 1 – ( < <
<
«$
%
<» 2012 .
(
( )
* 6 < < +2 5
* 6 < < < 1,7 5
* 6 < < < 3 5 ± 1 5
*
<
<
, F)/
H%
H
%
, , 1800±200
186±50
200±50
2800±400
1219±134
136±3
-
2400±120
178±12
59±4
-
800±86
31±2
31±3
-
30±3
18
Q 2 – =
<
H%< H
%< <
<< «/
» <
Q<
, 5
1 (
)
< 1,7
< 3±1
284
31
10
*
<
<
, F)/
H%
H
%
551
98
990
110
22
19
194
20
16
10
160
10
30
22
10
( <
< , . F <, <
<< <. F? < <
. $ H%
, H
%
– . 5
< < H%
H
%
. =<
<
<
<
< < 3 5 ± 1 5.
""
< <
,
D?
<
. –
, , ?,
<
.
< «$
%
<» «/
» <
<
<
< .
!
, H%
, H
%
– . 5 <
< H%
H
%
.
<7 <
<
< < < (3
± 1) 5. ( , < 6 <. <7 80 , < <
2 5.
19
=8 663.252.6, 663.266
2-9 8 7 < 8 8 7
..*
! ()) "", $ "
/ #$, -mail: [email protected]
*%, " F
D? .
)
'
60 <. ' , 5F2-H
. < D
< 5F2-H < .
' D <,
5F2-H < <
< ?
D, ? <
< ?< <.
THE USE OF CO2-EXTRACT FROM GRAPE SEEDS AS A FOOD
ADDITIVE FOR VEGETABLE OILS
Sviridov D.A.*
State scientific institution all-Russian research Institute of brewing, nonalcoholic and
wine industry, RAAS, Russia, -mail: [email protected]
* Corresponding person
Abstract
One of the main tasks in ensuring the productivity of processing industries is
the use of secondary resources. Annually as a result of processing of grapes in the
Russian Federation is formed 60 thousand tons of grape pomace. Earlier studies have
shown that using the technology of CO2 extraction allows to obtain high quality
biologically active product of vegetable raw materials. We carried out the work on
increasing the biological value and terms of storage of vegetable oil by introducing
CO2-extract from grape seeds.
The research results allow to conclude that the addition of CO2-extract from
grape seeds can significantly increase its resistance to oxidation, enriches oil
biologically active substances and extends the shelf life of the oil.
20
( ? < D? . $ H
< < %
< < < D?D , – .
Z , , , <,
<D <
< <
< <
, , ? .
( < <
D <, , < . !, '
280-320 , 7 60 < .
, < 7< , , 7
[1], H ? [2]. F
<
H ?
<
.
F< 5F2-H
.
$ 5F2-H 70 <. < 30,5°5.
$ H
< ?, ? <
, <D << D %.
5 D %D
%D, <7D <<, <,
< H< . $ H
<
D , H.
5F2-H < <
<, D < <
<. H
< <
H,
% [3, 4, 5, 6].
( , 5F2H 7
. [7]
21
< D < 5F2-H <
.
$%&" '" !
5< <. (
< 5
8
, F8F 8$ «
», 7 < 20-25°5 <
< <? <
. 5< <
?D .
=
%
, .
F5Q ' 52110 «= .
=
».
$
F5Q ' 51487 (5F 3960) «=
. =
».
8
F5Q ' 53099 «† < . F ».
()!" !
( %
<
5F2-H <
0,05 0,10% < . $
H
<
<< < < <
< 22±2°5.
( < H. < H
<
< %
-<<
<, D?< D <. $
.
Q – < %
< < <
, <
F/
$
,
<<
½F/
8
,
..
'%
<
H
+5F2-H < +5F2-H <
0,05% 0,10% < <
< <
3
<
6
<
12
<
3
<.
6
<
12
<
3
<
6
<
12
<
0,1
0,1
0,1
0,1
0,1
0,1
0,1
2,0
13,8
18,7
38,9
6,6
9,6
19,5
8,3
14,3
28,8
7,6
8,4
9,0
9,7
7,3
7,5
7,7
7,6
7,8
7,9
22
' , <,
D <, < 22±2°5 <7 < %
< < 0,05% 5F2-H < .
, < ? ,
7 < . $
- H
<
D. ?
<
<
< . 8
< ? (
).
8
<
,
9,6 $ H
< < ( H
) 19,3 , 1,3 .
$
< < 0,10 %
5F2-H < , < <
0,05% 5F2-H < , 7, < < H
. Z
<
<, < H <
H%% (.. ), , D (
%
), ? < <
*
<, 12 <. <
H
< ? . < ( H
) <
< < . Q
<
<
? , < D?
< <
.
""
' D <,
5F2-H < <
< –
0,05 % < < ?
D, ? <
< < ?< < < .
+%!-/0 3
1. F /.8., $D 8./., < ).., 5
".8., 5
Q.8., " Q."., " (.. $ 23
// (
. =
2012.R5.5.24-26.
2. F /.8., $D 8./., < ).., 5
".8., 5
Q.8., " Q."., E< ?
//Q
. =
2012.R10.5.6365.
3.& Q.8. '
<
< . $
2004. 5. 10-37.
4. Mhemdi Houcine, Rodier Elisabeth, Kechaou Nabil, Fages Jacques.A supercritical
tuneable process for the selective extraction of fats and essential oil from coriander
seeds J. Food Eng. 2011. 105, R 4, 5. 609-616.
5. Q
$.'., ".. $
<
< < . . .
$? Q
. 2010, . 60-62
6. Jokic S., Nagy (., Velic D., Bucic-Kojic A., Bilic M. Kinetic models for
supercritical CO2 extraction of oilseeds. Croatian Journal of Food Science and
Technology.-X
, 2011.- Vol 3,R 2.-. 39-54
7. /.8.F, 8./. $D, ).. <, ".8. 5
, 8..
Q
. Z - / // $? <7
. 2013. R3.
5.40-42.
24
=8:664.8:634.22
88 8 0 ..*
! 0"-"$ $ -" "" "" #$, ,
e-mail: [email protected]
* %, " ( H%%
< «SmartFresh» < – , 5, 8 ‹.
!
, < D?<
?
< 1-<
7 <
, , , 1,0-1,5 <
< .
NEW INNOVATIVE APPROACHES TO TECHNOLOGY STORAGE PLUMS
Prichko T.G.*
Public scientific institution North Caucasian zone research institute of gardening and
wine growing, Russian academy of agricultural products, Russia
e-mail: [email protected]
* Corresponding person
Abstract
The article presents the results of research on the effectiveness of the drug in
«SmartFresh» plum fruit storage technology based on high-quality features - Kabarda
early , Stanley , Anna Späth . Found that post-harvest treatment drug with the active
ingredient 1- methylcyclopropene provides better preservation of fruit flesh firmness ,
commodity quality that allows them to be transported over a long distance , to extend
the deadline plum consumption by 1.0-1.5 months at higher biochemical indicators of
quality .
5?
< < ? . Q
< %
<,
D?< , D <, , (
),
25
H < . !, D «<», ? <
< (<
) . $
<D <
, H 7D , , [1,3,4,5].
<, %
<D?< < , <
< «SmartFresh», D?< ?
< 1-<
(1-=T$), < H [2,3,5].
Q, < , 7 1-=T$,
H, , , < , 7< D <
, <7< ? [3, 4, 5, 6].
<
D H%%
< «SmartFresh» , 7, ,
, , – , %
, <.
$%&" '" !
( D H%%
< «SmartFresh» 3
, ? F$E «T
», –
(
), 8 ‹ 5
(
). !
U<
,
D < %
-< (
<
, , ).
" , D?
<7 <
< DD <
H%%
«SmartFresh», 1-=T$ - ?
, < <.
F< < ? <
<, 6 < 5-6%.
F
< «SmartFresh» , H
< < < 12-15
5. (
< <? , <
<
0,068 1<3 U< < D?< 24 . $
<
30 <. D?<
. F
26
< +4
5 85% 30
.
( H
H <
< 2005 8 <
?D
H ICA-56. Q
<
(20 7. ) <
?D < FT – 372 < <
<
8<< . F D?< <
<: < ? - F5Q 28561-90;
– F5Q 8756-13.87; < – < 0,1N
< NaOH F5Q 25555.0-82.
()!" !
5 , < , <
<, H,
D?
D?
, < < H – <
«SmartFresh». < H D <.
Q, < 6,5 (
1).
* 45 H 97,0
</- 244,1 </- , 2,5 7.
* 1,5 < , 60 %, - < (
<
0,5 ). $
H
< < , . =
.
F < 7 , <
(2,5 D 3,7 ).
</-
300
244,1
250
200,8
170,5
200
134,2
97
150
48,8
100
27,9
20,5
15,8
50
F
22
.0
9.
31
.0
8.
22
.0
8.
05
.0
8.
03
.0
8.
0
" <
'
1 – "< H 27
E < , ?
. Q, 5 3-
< ?
.
F H < 5, 3 <
H 2,2 . Q, H <
5 10,8 </-. $
<
H
160,8 </- 48,8 </- < , .. <
H 3,3 <.
$ H
< 30 13 , < < «SmartFresh» < 92,0% ( 1).
Q 1 – H (
H, </-
5
5
25.08
28.08
15.09
25.09
13.10
10,8
34,2
90,5
160,8
F
10,8
15,5
27,9
48,8
92,0
5
8 ‹
22.09
25.09
10.10
04.11
14,3
35,0
80,2
184,6
F
14,3
20,5
53,8
87,8
$
< 5 8 ‹, , 1-=T$ 7< D <
(
2).
5,9 5,9
6
3,2
3,5
4
4
2,7
2
2
0,5
0
$
05.09.
15.09.
25.09.
" <
F
'
2 – < 5 28
< ? D
< . $
<
«SmartFresh» < , <<
< < < <<
<. Q, ? 11,3%, 45 <
13,7 % < .
( < , < <7 ? (12,7%) (
3).
%
13,2
12,9
14
11,3
11
13,7
12,7
11,5
11,9
8
5
05.08.
25.08.
04.09.
24.09.
'
3 – < < ? $
, 1-<
<, <
<< < , <
7 , <
(5 ') <7<
( 2).
Q 2 – #
< 45 '
< F?
F?
(< (<
(
5/
, ,
5,
',
?, %
%
%
</100 </100 5
11,3
8,3
0,68
12,2
2,8
98,6
13,7
10,0
0,58
17,2
1,9
72,3
F
12,7
9,3
0,62
15,0
2,2
80,4
5
5
16,0
11,7
0,65
18,0
4,8
86,0
18,3
13,2
0,55
24,0
3,5
68,0
F
17,5
12,6
0,59
21,4
4,0
76,0
5
8 ‹
16,6
12,1
0,90
13,5
7,6
51,5
17,5
12,6
0,72
17,5
4,5
40,5
F
17,0
12,2
0,80
15,3
5,9
45,6
29
""
Q< <, D
H%%
< «SmartFresh» <
<
D? :
1.
F
< < 1-=T$
H 7< D
<
, D <
.
2.
$
< 7 < 7
.
3.
E < <
«SmartFresh» < , <7< ? 7 <
.
+%!-/0 3
1. $
Q., 7 =.(. ( 1-=T$
. 5
«$
» '!$
« », . 5<
, .24, 2012. - 5.287-292.
2. $
Q.., 7 =.(. H%% // (
,
, , 2010.- 5.344-351.
3. Prichko Tatjana G., Ilinskiy Alexander S., Karpushina Marina V. Effect of 1MCP treatment on the quality of some apple varieties in RA and CA, «6th
interntional POSNHARVEST symposium», Abstracts book, - 8-12 April 2009.Antalya –S. 167.
4. Zanella A. Auswirkungen der Nacherntebehandlung mit 1-Methylcyclopropen (1MCP) auf die Lagerfähigkeit von Äpfeln in Südtirol (Italien) // Limburg J. – 2005.
– Vol. 2. – R 1-2. – P. 6-26.
5. Lippert F. 1-MCP verlangert die Lagerfahigkeit und vermindert Schalenbraune bei
der Apfelsorte 'Berlepsch'// Erwerbs-Obstbau. – 2006. – Vol. 48. – R 3. – P. 6977.
6. Gursel F., Ozelkok S. Effect of 1-MCP (1-Methylcyclopropene) pretreatment on
maintaining fruit quality during cold storage of Granny smith apple // 6th
international Postharvest symposium. (Antalya, 08-12 April 2009). –Antalya,
2009. - P.178.
30
=8 634.75:631.563
8` 7
8 7 8
.
.*
34&! (6& «
" "»
, e-mail: [email protected]
*%, " $
< <
,
? T*', 2012 . < < . ( – <
, E
. !
< < < 2 °5 F(( 90%,
D 6 E
, 10 <
.
THE DURATION OF STORAGE AND THE PERSISTENCE
CONSUMER PROPERTIES OF GARDEN STRAWBERRIES’S
BERRIES (FRAGARIA’S BERRIES)
I.M. Novikova*
Michurinsk state agrarian university, Russia
e-mail: [email protected]
*Corresponding person
Abstract
The comparative estimation of consumer properties of garden strawberries’
berries different varieties of American and Dutch selection grown in conditions of the
Central Black Earth region, in 2012, is conducted. The change in the quality of the
investigational berries during their storage is studied. The most promising varieties
for storage – Camarosa, Honey- are selected. The optimal terms of the berries’
storage in the refrigerator at a temperature of 2 °5 and VVG 90%, which is 6 days for
berries varieties of Honey, and 10 days for berries of variety Camarosa, are
determined.
&< < <
<
< , < 7< , < D.
_
< D 7< < ? D < <. F
7
H
< < 31
, %
< < < D < [4]. #
7
, < < D , , < <, < 0–205 95% <
5–7 .
, < < D
<. < , <7 <D
. 5? <
%
<
, < < D
<
< . $ H
< – % %
, %
. H
< , , < [5].
$%&" '" !
TD <
< .
FU< < ,
? 2012 , < 7 Q<
«5
».
_
D , , , <
<
1000 .
(< – ' – <
, , D, 7 D,
<
D, <.
<
– <
, , <
D, <
D, D 7< < <, <
D .
– , , 7 <<
D <
,
7 D, <
D D.
E
– <
, ,
D,
<
D,
D, <.
Z – , , D D, < D 7 ? <
.
" D
, < . F < 7< .
32
()!" !
( , < <
< t 205 (. 1) . $ H
< D < .
F
D < < 10-
7. $ H
< <
, 7 9,1-10,0 ; 7
- 8,1-9,0; - 7,18,0 7,0- .
' , , , 7 , %
< <
D. _
< D, D D,
- <. $
. 1.
'
1 - F
< < F
D < , < <
, . D D 7 <
(<-' 7 8,80 , 7< .
_
< < <.
( < : <
?
, < , . 2 ?
.
33
'
2 – < < 2 , < 7
, < . &
7
Z. _
, <
<, 7. * 10 7
7 (<-' E
. _
<
10 <
<, 14 <, <, - 7
. F
14 < 7 . /7 <
<
, 7 , <
.
" D
< <
7
. $
, .
Q - ! < < < = <
, 2 4 6 8 10 12 14 (<-'
<
E
Z
993
995
996
992
994
985
991
951
986
813
744
987
855
973
604
701
979
787
950
368
34
968
824
894
640
-
878
438
-
= 1000 .
!
: < 2 05, 90%. ( < < D
, <. Q,
< < D? <.
! (<-' , <
?
. * 7
25,6%, < - 29,9%, < 12 . * D .
( <
< <7
7 <
<
.
< 6 D - <
?
, 7 1,3%. ( D? 7 <
< 7 , < < 12,2%. $ H
< 7 5 .
& < < , 7
< 7
. * 4,9 %; 7 - 14,5%, 6 .
* < 10 <, <
?
, 21,3%. * .
F
7 <
D E
. (
7 < <, 2,7%. * < 10 <,
< 4,5%. $ 7< , 17,6% - 10 ;
36% - 12 56,2% - 14 . * , D.
_
Z < . &
< D 4 (18,7%), 7 , 39,6%. * < , , 63,2%.
""
( , < < < <. F
. <
7 7
, , ?, 35
< , . !
< < < 2 °5 F(( 90%,
D 6 E
10 <
. _
< D .
+%!-/0 3
1. F5Q ' 50520 – 93 &<. '
D <.
2. /
, '.Z. < < / '.Z. /
. – =.: , 1993. - 336 .
3. ), /.. 5 ?
,
%
<
< , < , ? T*' / /..), F.=. #
, .=. // Q
. – 2013. - R3. – 5. 5-11.
4. , Q.8. E<
-
< <
D D: %. . .
. . - 5$., 2005. – 22 .
5.
(
%
http://www.angarppu.ru/component/content/article/63-ventilacia/290-vse-o-xraneniifruktov.html ( ? 14.03.2014).
36
8 2.
88 ;7c
7
8=
37
=8 664.691/694
7= < 7 8
- $.
. *
34&! (6& «" " – -$"" », , e-mail: [email protected]
*
%, " !
< < G ; < < <
, <
; , <
7
; < D <
.
USE A PEA FLOUR IN TECHNOLOGY OF BIOLOGICALLY
VALUABLE GRAIN PASTA
Prigarina O.M. 1*
State University - Education-Science-Production Complex, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
Optimal dosing of additives pea flour and peculiarities of its application, we
studied the influence of optimal dosages of pea flour quality pasta dough, quality
indicators and consumer dignity of grain macaroni products; the formula has been
developed, the technology of grain macaroni products of high biological value; the
influence of pea flour on biological-paying value of the finished grain pasta.
% , D? % <
< <
< < H
. ( H< <
H
, , , , < D, <
, 7 [1].
(< < <
%
(
,
38
), 7
<
< < < : , ? ,
, <
, <
, < ?, <
< % – <
. T 7<
D – <
%
, <, <
7 G<. T G D < <
D? H [2].
$ <
<D
< , 7 <
7, < ? 7
, ?, [3].
$
<
< '
<
. F
, , < , D D,
, 7 D , <
[4]. " 7 H
? <
,
< 7 <
< , < <, , < . (
D < < <
(,
? , , %
%
, < . $
D <, H
< < ,
D?
?D
<
,
, <
. #
<
D
7
, ,
D , D , ??D
%
H
[5].
- < 5 . 5
< < <, 7
<< <
.
"< < , <
,
D? D . Z< < <
D ? , . ( < D . DD D,
D? < < D, <,
<, < < < < [6].
$%&" '" !
&
<
7 – F5Q 9353-90, %< Pentopan
500BG (
– 2700 ), , <
<
, < - Q! 9293-009-89751414-10.
(
<
«
» ?< <
<.
39
()!" !
5 D < < <
G 5 %
20 % < 7 ( <). < < <
<.
" H< <
7 G
< , <
<
45 º5 7 : – 1:1. " <
%<
D
Pentopan 500BG 0,008 % <
. " <
, 4,5…5,5,
D 0,2 100 .
$
< 2,5 . &
7 < < 33 %. $
<
7
<
, <
200…450 <<.
$
< <
? D?< <: D D <
<
<7 << < < ,
<
34 %. "D < < <.
' <
, ?
1…1,5 << %
< 7. ' <
7 7 VES Electric (< 7
:
7 – < 55 °5, 7 – 45 °5;
58 % – 60 %) 30…40 < 13 % [7].
(
<
?< <
<. 8 , <
7D <
. $
<
7
5 % … 15 % <: < – 1,2 % …
8,3 %; < – 2,4 % … 4,2 % . !
< 20 % D D D < <, H
< < < ,
< 5 % … 15 %. ! <
<
U <
< <
<
<
(<, , , ) < <
< .
( H< < <
– ?,
77
D . <
40
D ? 0,3 %
… 1,3 %. ( <<
D < 10 % … 15 % < 10 % … 15 % <
.
Q< <, < <<
< < < 10 % … 15 % < <
7.
" < <
<
< 15 % < < 10 %
< < 7, <
<
<
'. Dominioni. <
< 5Q-1. ' 1.
Q 1 – ( <
<
< 1,938
2,014
8
<
, 8,9
8,1
<
, 9,2
10,5
2,014
7,8
9,5
$
, $
F 15 % < 10 % < <
8 H< , < 3,9 %, <
3,3 % … 14,1 % D <. 8
H
< 9,0 % … 12,4 % D <.
Q< <, , D < < , 7 <
.
E< <
<
< 2.
Q 2 - E< <
<
=
, % / !
, %
5<< <
, %
&<< <
, %:
10,44
17-10
10,37
7,52
41
F <
:
15 % <
10 % <
14,28
12,13
23,2-14,0
19,7-11,9
13,62
11,58
9,13
7,86
<< <
, %
<, %
, % ...
$, % ..
&
, %
2,85
68,2
2,3
0,35
1,008
4,29
60,60
3,25
0,95
2,12
3,88
53,00
2,73
0,75
1,78
8 , <
7D <
. =
1,69…3,84 %, < <7 7,6…15,2 % D <, , 2…3 , 18,7…41,3 % < 2 .
""
!
< < G , 10 % … 15 % < 7 < 7.
< < <
, 7D: < <
3,9 %, 3,3 % … 14,1 %, 9,0 % … 12,4 % D <.
"
< < 7 <
. $
<
7 5 % … 15 % <: <
– 1,2 % … 8,3 %; < – 2,4 % … 4,2 %, ?, 77
D , <7 0,3 % … 1,3 % D <.
'
<
«=
7» 7
.
F
< D
<
. ( <
D 1,69…3,84 %, <<
<
2…12 %, D < 7,6…15,2 %.
Q< <, < < <
7
< < <.
42
+%!-/0 3
1.
F
.8. Q
H<
<
7
?
:
<
% - F: #F! ($F "
- !$", 2013. - 299 .
2.
5._., F
.8. =
: 7
?
- F: «Q», 2007. — 276 .
3.
F
.8., 5._., (
8. . 5
7
<
: <
% - F: FQ!,
2010. - 165 .
4.
5._, F
.8., '< (.(. . , <
: <
%
- F: F! ($F "
- !$", 2011. - 264 .
5.
5._, F
.8., E<G ).(. .5
7
, <
%
: <
% / $
- . ,
%. 5._. . – F: #F! ($F «
-!$», 2011. 262 .
6.
E<
[Z
].
URL:
http://www.activestudy.info/ximicheskij-sostav-goroxa/.
7.
$ F.=., F
.8., $
). 5. 5
7
<
7
< < < / «$
'
»: <. 3-
<
-
–
%. – F: #F! ($F «
– !$», 2013. – 5. 102106.
43
=8 637.146.3
=7 8 =
' $..1*, $..2
1
34&! (6& «"–!6», ,
e-mail: [email protected]
2
34&! (6& «"–!6», , e-mail: [email protected]
*
%, " $ D D <
, D 7D
<
<, %
<D D < . $ <
< , D? %
<
D , ?D 7 < D. 7 D , , <.
$
< <, , 7
FD DVS YF-L811 – Yo-Flex 7 7
< 7.
JUSTIFICATION OF THE CHOICE OF USED FERMENTS
BY PRODUCTION OF YOGHURTS
Evdokimova O.B1*. Kurnakova O.L2.
1
FGBOU VPO "State university-UNPK", Russia, e-mail: [email protected]
2
FGBOU VPO "State university-UNPK", Russia, e-mail: [email protected]
*
Corresponding person
Abstract
By production of yogurts an important role is played by cultures of lactic
bacteria and ferment which promote a skvashivaniye of dairy mix, form a consistence
and vkusoaromatichesky properties of ready-made products. When developing new
yogurts the paramount attention is paid to properties of the ferments promoting
formation of dense structure and a dense consistence of products, reduction of
duration of a skvashivaniye and low post-oxidation. Low post-oxidation improves
taste and a product consistence in the course of production, packing and
transportation, especially in the conditions of insufficient cooling or difference of
temperatures.
44
The moved research of technological properties of three types of ferments at various
temperature modes, showed that at a skvashivaniye fermenting culture of FD DVS
YF-L811 – Yo-Flex is established the high speed of a skvashivaniye of yogurt and a
wide temperature interval of a skvashivaniye.
•
– <
, H
< < , , < 7 .
, <
<, ? , <
%
D 7
<
<
-
< < :
D? D . " <D .
Streptococcus thermophilus < , < Lactobacillus bulgaricus <. <
< < < D , < < 7.
$ <
< , D? %
<
D , ?D 7 < D. 7 D , , <.
$%&" '" !
$ < <
: FD DVS YF-L811–Yo-Flex, YO-Mix 601 JOINTEC
X3 < 7 (< ) . F
D 10 7, , , , ,
, , ?? , . " <
7 < ,
D? < 7.
()!" !
& FD DVS YF-L811 – Yo-Flex < 7<<
, D Streptococcus thermophilus Lactobacillus delbrueckii bulgaricus.
$< , << < < <. ( 7
<
D . " , < 7
< 45
7 (35-45
5), < << <
<
7 .
#
< 7 < 35 5, 40 5 45 5. '
1.
'
1 - ( < 7 L811–Yo-Flex
YF-
& YO-Mix 601 – , DD? Streptococcus thermophilus
Lactobacillus delbrueckii bulgaricus, D? ,
< . < D
7
. '
<< < 7 37-42 5.
#
< 7 YO-Mix 601 < 37 5, 40 5 42 5. '
2.
'
2 - ( < 7 YO-Mix
601
& JOINTEC X3 – , DD? Streptococcus thermophilus
Lactobacillus delbrueckii bulgaricus. " , < < <
<. (
<
. '
<< < 7 38-43 5. (. 3)
46
'
3 - ( < 7 JOINTEC
X3
Q< <, 3 < <, <
<, 7 FD DVS YF-L811 – Yo-Flex 7 7
< 7.
F
D?< %
< – , 7 .
F
7
(. 1), 4.
'
4 - F
Q 1 - ‹ #
10
9
8
7
6
E
F "
(
(7 !<
#
5
4
3
2
1
47
E
5
"
F ""
$
< , << < < < , %<
FD DVS YF-L811 – Yo-Flex. <7 < ,
%<
YO-Mix 601.
7 ?
D FD
DVS YF-L811 – Yo-Flex.
+%!-/0 3
1. #?
. (., ‹
8.5. =
. - =.: =5E8, 2000.125.
2. (.., †
.. $? - =. 2001. - 123.
3. . ., E< 8..Q
<
<
. - =.:
5, 2007.- 310.
4. Q<< 8.., '
'.. •
, <
. - 5$.:
$
%, 2003.- 265.
48
=8 663.885
8 77
;= 8= 8
8 ==
0 ..1, /0 ..1*, 4 ..2
1
! 0"-"$ $ -" "" "" #$, ,
e-mail: [email protected]
2
! -" # #$" #$"# , *
%, " '
<
%
<
<
« «Z». < -< < 12,5 % , 0,76 %
< <
D? D <. $
%<< < < $6-/
Q
=7 " G
< , <
, <
. $ <
<
-
, <, < .
PRODUCTION OF MULTICOMPONENT FUNCTIONAL PRODUCTS
ON THE BASIS OF FRUITS RARE CULTURES
Prichko T.G.1, Droficheva N. V.1*, Chernenko A.V.2
1
Public scientific institution North Caucasian zone research institute of gardening
and wine growing, Russian academy of agricultural products, Russia,
e-mail: [email protected]
2
Krasnodar Research Institute of Storage and Processing of Agricultural
Products of Russian academy of agricultural products, Russia
*
Corresponding person
Abstract
The prescription composition of a functional multicomponent product «Energy
Nectar» is developed. The new type of canned food possesses pleasant sweet-sour
taste and contains 12,5% of sugars, 0,76% of acids and a complex of vitamins
satisfying daily requirement of an organism. Processing by fermental preparations by
Fruktotsy P6-L and Trenolin DF Mash taking into account technological properties of
raw materials, time of processing, concentration of a used preparation is carried out.
49
Materials of research of a chemical composition of fruits of apples-krebov,
henomelis, a sea-buckthorn in a high-quality section are presented.
& <
< <
<
G
< .
" < <<
<<
(<
F
&
, % <
<,
<
<
7
[5, 7]. <
<
<7
D? <
< < ?
<
< < <
<
, <
%
D <
. $< < %
<
< – < 5, ', %
?, < ?< <
<, D <<D. '
<
<
%
[1,
3, 6].
$%&" '" !
FU
< <
<
%
« «Z», < , < (
-, <,
). ?< <
< < %
<, <, <,
%
<,
<,
<
%, %
< . <
.
()!" !
" <
« «Z» , , . < H
<
, D? D D , ( 1).
50
Q 1 – =
<
« «Z»
5
5
5<
, %
$D ,%
$D , %
$D , %
5
, %
R1
40,0
20,0
10,0
5,0
25,0
=
< <
R2
R3
60,0
50,0
10,0
5,0
5,0
5,0
5,0
10,0
20,0
30,0
R4
45,0
10,0
15,0
10,0
20,0
$ <
<
<
«
«Z», , %
<,
D? 7
?
D, , ( 2) [8].
Q 2 – <
<
« «Z»
<
=
8<
F?
†
, %
, %
(),
, %
%
_
, E1
60
0,005
10,0
8 , E2
5
0,03
3,1
F, E3
5
0,08
8,2
9,9
, E4
10
0,009
14,7
5
, E5
20
40,0
'G : Y =0,005X1 +0,03E2 +0,08E3+ 0,009E4 = 0,094
<: Y = 10,0E1+ 3,1E2+ 8,2E3+ 14,7E4+ 40,0E5 = 16,0
: Y = 9,9E3 = 0,49
Y, = 65,9+4,5 = 70,4
« «Z» - %
, D?
, , <, —–
, ,
< ? .. #
7
<D
? , < <
, D?
< . $
? D <
D D
< -
< < (12,7-17,5), <
<
' (125,8-408,0 </100), < (206,0 -304,0 </100), ?
%
D 860 </100. <
<, D < < ?. , < 15,1 </100 , 9,5
</100 , 7,7 </100 < [4, 9].
F< H%% 7 ?
?D?
<
, (5,0 – 6,8 %), < / < [2]. $
%
, < 450,0
</100 , 400,0 </100 , 7 40,0 </100
%
, < 100 </100. $
51
, %
. F <D GD
<
D . " 7 , ?, < %<D
<, H
< < $6-/,
%<. #
7
< D %<
<
?
< , <<
HD ? 10 % %< <
$6-/ 2 < 1 . ! < <
< (
1).
66
65-66
65
64-65
64
63-64
63
62-63
62
61-62
61
60-61
60
59-60
59
3
58
1
58-59
1,5
2
3
4
0,5
6
-
,
, '
1 – ( < $ 6-/ <
%< #
7
< < ,
<, < <
, <?
< < [10]. ( %
, – (0,8 </100 ), % (0,4 </100 ), (0,12 </100 ).
#
%
13 <
(99,9 </100 ), .. 6 <<
(, , , , %, %), 70 % ?
. $
D . ( , %< Q
=7 ", <, <7D ,
7D , D
H , < ? < . $
52
(
, <
< <
, < , << 15 % %<
< Q
=7 " 2 < 1 4 H
(
2).
!
, < Q
=7 " <
D? ? , <
<, <, %
<, %
<D .
4,5
4
3,5
3
2,5
2
1,5
1
0,5
0
2 1 100
4 6 2 100
'
2 – $
%<< < Q
=7 " 4-10 <
H%
. ( %<< < < < % , 7 8 D < <. $ H
< 7
, G <
. F %< 7 %
D
<
, G < % , H%
.
$ <
<
<
« «Z», , H
, %
<
, < 7
<
( 3) [7].
Q 3 – #
« «Z»
« «Z»
5
, E1
$D , E2
$D , E3
$D <, E4
5
, E5
<
, </100 5
'
)
''
8,4
186,6
0,05
20,6
14,6
4,4 0,38
3,2
118,2
80,0
200,0
0,2
53
5
—– 2,0
0,4
-
?
%.
98,0
196,0
180,0
400,0
-
, %
1,3
0,4
0,2
1,0
-
#8/85F(˜)
!'F()_
$
< 5: Y=0.08X1 +0.21X2 +0.03X3 +0.8X4 =9,7
$
< ': Y= 1.87X1 +0.15X2+1,18X3 + 2E4=134,4
$
< ): Y = 0.04X2 = 0,9
$
< '': Y =0,0005E1 + 0.004X2+ 0.002E4= 0,06
$
—– : 0.02X2 =0,2 </100
F? %
:Y=0,98X1+1,96X2+1,8X3+4,0X4=106,6
$
: Y =1.3X1 +0.4X2 +0.2X3 + 1.0E4 =1,0
5<<
100 252,9 </100
""
( « «Z»,
7 %
, < . F
<
-
< <
, <<D
, < <
<
Q
%
%<
<
7 , < , <
D? ? <,
<, %
<, %
<D .
+%!-/0 3:
1. # F.. < ?: <
//
$? <7
. =
, 2004. - R12. - 5. 84-86.
2. (
G .=. E
< 5 // - (
. , 2008. Q.1. – 5. 39-42.
3. "
JI.B., (.(. #
?
// - =.: $?
<,1999. -356 .
4. "
% .(., $
Q.., .. $
<
<
%
/
= IV (
.-. % <
G.
2010. .254-255–Q 8!, 2010 .
5. )
<
F.(., !
(.. 5
? <
. – FG: Q!, 2008. – 5. 14-19.
6. '
2005 // $?
<7
. =
, 1998. - R10. - 5. 19-21.
7. D
).(. // $? <7
.
=
, 2005. - R1. - 5. 16-18.
54
8. =
.5., # 8.., =.=. !
? %
, < '
// (
. 2003. - R1.- 5. 23-26.
9. $
Q.., "
% .(. #
< / IV =
-
% <
G ! 5&5(. «$< <
< » [H
. ]. - , < 2012.
10. $
Q.., * /."., "
% .(./
%
.- E / , R7, 2012.- 53 .
55
=8 620.21
8 ;;
8
8= < J8
7
#5 6.(.*
34&! (6& «
" #
"», , e-mail: [email protected]
*
%, " $ ?
<7
< 7D
< < %
< <. F< , D %
%
,
<. < -
%
%
D <
D?
<
<.
STUDY OF THE INFLUENCE OF PHOSPHOLIPID PRODUCTS ON THE
RHEOLOGICAL PROPERTIES OF CHOCOLATE MASSES
Dahuzheva Z.R.*
VPO Maikop State Technological University, Russia,
e-mail: [email protected]
*
Corresponding person
Abstract
Food industry companies are seeking to expand the range of its products
through the establishment of food products with specific functional properties. One of
the priority areas is the use of herbal dietary supplements, among which are
emphasized phospholipids derived from vegetable oils. The high surface active
properties of phospholipids allow their use as high structure component of various
mixtures of prescription.
'
7
< <, D?< < < . 5 <
<D 7
, <
<
< D <
, < <
– .
56
5 < , < < D .
! H
, < 7 7
7
< <
< , D , <.
" , , 7
D ,
? < %
%
.
F
D %
%
.
F< D . ! H
, %
%
%
.
$%&" '" !
( U
%
%
«Z5» «E
», %
%
< %
H
<
<.
" <
- %
%
%
: « 130» « F-5», %
% .
( %
-<
< %
%
%
.
, D - %
%
%
%
<
, H
< %
%
«E
» «Z5» , < H
<
.
Q
–
F
%
-<
%
%
%
E <
& T
%
%
F
<
-130
5-F
«E
»
«Z5»
5
,
E,
<
%
%
<
%
%
<
5
5
5
$
=
=
$
57
=
, %:
%
%
, < :
%
%
%
%H
<
%
%
%
%
%
% =
?
( <
?), <F/
$
,
<<
/
73,50
38,00
10,00
5,50
18,00
2,00
25,20
1,30
57,00
7,50
17,00
13,00
12,00
7,50
42,75
0,25
65,50
32,00
6,00
7,00
15,00
5,50
32,60
1,90
55,00
6,00
13,00
13,00
10,00
13,00
44,25
0,75
6,00
12,50
15,07
21,50
1,95
1,20
4,58
3,75
8
%
%
,
D?
%, , %
%
< «E
» %
%
,
D? %
%
<<
D, 7 D <
< < «
< 130»,
%
%
< < «Z5» <
< < «
< 5-F».
!, - %
%
< <
,
D?< H , D? - .
()!" !
=<
-
%
%
< < «E
» < 7
< <
H
. 7
< ( <
30%), %
.
&<
H%%
7
< 0,4 % %
%
1, 2 – <
H%%
7
< %
%
30 -1.
58
Z%% , $*
14
'
1
–
&<
H%%
7
< (< 4005)
0,4 % %
%
:
1 – 5;
2 – 130;
3 - E
12
10
8
1
6
4
2
2
3
0
0
10
15
20
25
30
, 35
-1
7
< (< 4005) <
, < %
%
«E
» <
<D %
<
7
<.
2 <
, %
%
«E
» H%%
7
< D <
< < « 130».
<
, < 7
< %
%
«E
» 7
<.
Z%% , $*
10
'
2 – ( %
%
H%%D
0
(< 40 5) 7
< 30 -1:
1 – 130;
2 - E
8
1
6
4
2
2
0
0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
%
%
, %
59
D H%%
<
%
%
? < D?
, D? H%%
D % <
(
3).
'
3 – 5
H%%
%
%
:
1 – 5;
2 – 130;
3 - E
Z%%
,
% H
< <
5,6
6
4,7
4,2
5
4
3
2
1
0
1
2
3
3 << , %
%
«E
» D? %
% <
- %
%
« 130», U < < %
%
<
«E
» %
%
, <<<
< %
%
.
""
%
«E
» H%%< <
7
<, < .
( %
%
«E
» <, <
7
<.
$
, 7
< %
%
«E
» < <D %
<
7
<.
(
, %
%
«E
» D?
<
%
%
. Z<
<< %
%
«E
» 7
< 0,4%.
( %
%
«E
» 7
<
H
< <
– <
< 7
<.
60
+%!-/0 3
1. 5
(.(. '
%
%
%
%
.
8
% . ... . . . –
. – 2004. – 23 .
2. 5.8. '
%
%
%
// . $? . – 2006 . R 5 – 6. – 5. 35 – 37.
3. 5.8. -
%
%
%
/ '. †. « .
$? ». – , 2006 . – ". ( (Q. – 20.09.06. - R
1165 – (2006. – . – #
. 152 . – '. – 109 .
4. E &.'. ( %
%
7
< / #
8.#., ( ).8. // .
$? – 2006. - R 2-3. – 5.14-15.
5. 5
7
<. $ ' R 2300895 20.06.2007/
E &.'., ).$., 5
(.(. .
6. 5
7
<. $ ' R 2300896 20.06.2007 /
E &.'., ).$., 5
(.(. .
61
=8 663.86.054.1
8` .., $! . .*
34&! (6& «" — !6», e-mail: [email protected]
*%, " ( %
-
? ? ?
%
%
<
<,
7 <
, .
ENRICHED JUICE DRINKS
Ivanova T.N., Orlova I.V.*
"State University - ESPC", Russia, e-mail: [email protected]
* Corresponding person
Abstract
The article describes the results of research and development of experimental
variants fruit and vegetable juice drinks fortified physiologically functional
ingredients with different ratios of apple and carrot, as well as apple and beet juice.
'
– H
7
< : c
, , ? . Z
<< < . 5
, < %
<
<
, D? <
< <.
$
U<< '
< <
< 7 <
– 5‹8, < . 7 < (
90%)
%
%
-
? . 5
<, ? , <
U < ? :
<
-
, <
-
, , ? <
, .
F
, <, '
<
<
<
#. ( , , , 7
, < <. &
U< < < D
. ( < < < 62
, ,
<
, .., ? %
-%
< <.
7
D 7 ? .
$%&" '" !
( H< <
< < < <. Q< <,
U< :
– : , <
, <
< <
<
;
– ? 7 :
: <
— 90:10, 80:20, 70:30; : — 90:10,
80:20, 70:10, 85:15.
" ? <
:
– F5Q ' 52182-2003. " ,
%
-< <
. F
<
< < D 7 , , ;
– D F5Q 6687.586. 7 ;
– <
?
%
<< <
< F5Q 28562-90, < <
;
– <D F5Q 25555.0-82. =
<
< (NaOH)= 0,1 <
/<;
– F5Q 26188-84. =
<
< < H
< (<< H
<
), < <D :
– <
?
F5Q 5903-89
%< <
<.
Z<
#F!
($F
«
- !$» % «Q
».
()!" !
5 D (
-
<
< .
< 63
?<, ? ,
D? <
.
( 1 < , T
-
<
< '.
Q 1 - -< ? F
5
8
'
5 Q 8
, " *
< , %
< / <% ?
,%
, <%
10,6
8,16
1,00
8,2
2,8
33,2
3,9
8
8
11,5
9,51
0,90
10,6
2,9
34,9
4,2
7
9,8
8,37
0,44
19,0
2,0
26,4
3,5
6
11,6
9,39
1,00
9,4
2,6
37,6
3,9
4
=
11,0
9,12
0,75
12,2
3,6
30,2
4,2
10
F
10,6
8,64
0,83
10,4
2,9
31,4
3,9
5
F 11,2
9,58
0,57
16,8
2,4
37,7
3,6
5
!H
10,9
9,43
0,63
15,0
2,8
31,6
3,7
7
, 8
<
< H%%, H
< ?< < <<< <
H
.
Q< <, D
< << <, , < .
" < <
? : -<
, <7 <
< < 7 90:10,
80:20, 70:30, , <7 < — 90:10, 80:20, 70:10, 85:15, D?< < 7
.
$ 7 90:10 <
??
, 70:30 < ?< <.
$ 7 80:20 -<
?, <
, -
?? . $
H
< -
? 7 85:15, <, < , <D <.
Q< < < < 7: -<
—
80:20, -
— 85:15.
E< , 7
2
64
Q 2 - -<
5
'
< , , , %
?, %
5, %
_
11
0,9
3
8,5
=
9,5
0,3
5
6,0
5
10
0,7
4,5
9,0
_
-<
9
0,6
4,4
7,0
_
-
10
0,8
4,3
8,5
, < ? 9 % (
-<
) 10 % (
); 4,4 4,3. Z D < /, H
< %
-< 7 . Q<
<, , <
< ? .
""
, D? 7
?, %
< %< < <
.
, –
7<
<
H%%
?< < < 8
;
–
7 , 7 ? , 7 < 7< <
80:20,
85:15.
" <D <
, , D < /
.
+%!-/0 3
1.
) /.., #7
).8. 5 ? // Q
. 2012. R 9. 5. 35-40.
2.
< (.8. '
7
?
[]: 8. . . . . - F, 2000.
3.
8.8., &
8.8. $ ? // $
< H
< <<.
2013. R 5 (21). 5. 60-63.
4.
/
.5., 5 ).5. (5$ (
<). F: -
(5$, 2006. - 16 .
65
=8 664:633.88-021.63] : 613.2
7
8<
<
! ..*, ..
34&! (6& «"-!6», e-mail: [email protected]
*
%, " '
<
?
D?
-
7,
< ?
. ( ?
D?
-
- <, %
(
), <.
RATIONALE FOR USE MULTICOMPONENT FORTIFIER EDIBLE
VEGETABLE DIABETIC PURPOSE
Polyakova E.D.*, Ivanova T.N.
VPO " State University - ESPC ", Russia, e-mail: [email protected]
* Corresponding person
Abstract
Developed multicomponent fortifier vegetable food of hypoglycemic drugindustrial raw materials in powder form , used for enrichment of dietary foods
diabetic destination. As ingredients for food fortifier diabetic glucose-lowering drug
used purpose - industrial raw materials and dietary supplements – pectin - inulin
complex, flavocen ( dihydroquercetin ), selecsen and chromium picolinate .
5 < < <. 5 < H<
12 <. D 7
D D
.
< %
, D? ? <
<
. ( H< < <
?
($F'$) .
66
$ $F'$ < %<
[1].
$%&" '" !
( U
< %
,
, D? 7
< < , <D % :
- «8%-Z»;
- %
«=
»;
«‹
»; «"»; «»; «00-106»; «»; «'»,
? ! (
-
. F, ?? < ';
- < ?
«'» «7»;
- H (< ).
( :
- -
<, FFF «'
» (
R 62 'T. 03. 009.!. 000005.06.09 24.06.2009 ., Q! 9112-006-97357430-09);
- %
– H 5
"
, %
(
) 90%, <
=
< ?
;
- < – ?
(
R Ru 77 99 11.003 ).005528
03.12 20.03.2012 ). $
SOLGAR VITAMIN AND HERB World
Headquarters 500 Willow Tree Road, Leonia NJ 07605 5‹8;
- - ? R 77.99.26.9.!.469.1.08 28.01.2008 (Q! 9325-014-79899185-2007), FFF "
< "=
%<".
- <
,
? < <
«8%-Z», H
, %
< ?
, <, <, %
.
" <
7
,
H< <
?D -
Z"5
mini Cup < D?
<
JEOZ (_
). "
<
F5Q '
50928-96 «$<. =
<
8, D, )» F5Q '
50929-96 «$<. =
<
(». "
? <
(Z†E.
()!" !
- ? «8%-Z». F , ,
< %
, < H
[6]. F < <
(
67
</100) < «8%-Z»: (1– 0,06; (2 – 0,11; (6 – 0,20; '' –
0,36; ) – 1,3; 5 – 0,23 [2].
< < %
. 7< < < ? <
D D? %
- «'», «=
», «00-106», «», «‹
» [5].
< H (< ).
$
, <
H < < <
- <
H<
;
H < < <, , < ; < D , , , <, < ; H
<<, <, <, < <; ? < 7 <, %
%
, <
D < < [3].
$
<
< ?
.
!
, 7 ? ,
<
< ? < ?
«'» [4].
Q
$F'$ D ? 7
<, ? <
<. " H
<D D? : <, <? %
, 7 < 40 ™5, , <7
<
-< <,
, %
< [5,7]. 5
< ?
?
<7
< . "
H
7
D , <
40 5 D , D <. " ?
<
< . '
< < <
< =
< =' 2.3.1.2432 – 08 «
< %
H ? ? '» ( 1).
Q 1 – ' ?
<
=
'
(<, <) 100 ?
< ?
15,0
1,95
?, %
5
«8%-Z»
Z (< )
5
%
13,0
13,0
15,0
1,95
12,0
15,0
1,95
68
5<
?
(
<
)
$-
<
$
<, <
5, <
, <
(
14,0
45,0
6,30
92,0
10,0
9,20
#
98,0
345,0
98,0
40,0
98,0
100,0
100,0
89,8
101,0
196,0
39,2
98,0
22,4
90,7
" <
<
< ? ( 2).
Q 2 – E< ? <
?
($F'$)
$?
?
$F'$
< .
$
.
. . .
#, , #
75,0
9,3
12,4
†
83,0
7,8
9,4
!
, 365,0
41,2
11,3
< <
-
75,0
2,18
2,9
<
247,0
1,12
0,5
30,0
27,4
91,3
5,0
4,2
84,0
?
8,0
8,2
102,5
(
< < </100 (< 5
70,0
4,8
6,7
(< ''
20,0
2,2
11,0
(< (1
1,5
0,23
0,003
(< (2
1,8
0,15
8,3
$?
?
$F'$
< .
. .
=
H<, </100 1100,0
313,7
%
800,0
340,0
$
.
.
28,5
42,5
1300,0
583,0
44,9
=
400
294,6
73,7
†
=
14,0
2,0
5,6
1,8
40,0
90,0
T
25,0
5,9
=
H<, </100 E
<
200,0
200,0
100,0
=
4,0
2,8
70,0
10,0
3,1
31,0
†
< < </100
(< )
15,0
14,1
94,0
""
1. $F'$,
DD? <
.
2. <
? 100 .
+%!-/0 3
1. <
' EII ., . – =.: =, 2008. – (.
1: F? <
. – 336 .
69
2. & =. 8. ? <
«8%-Z», <
#8" «$
» / =. 8. &,
). ". $
// $
< % : II =
% H . - , 2011. – 5. 171-174.
3. $
)."., #
(.8., Q.. = H, ?
//Q
? 2011. - R 3. - 5 21-29.
4. $
)."., Q.., & =.8. 5 < ?
//Q
? . - 2012. - R 2. – 5. 41-47.
5. $
)."., Q.. ?
? .//Q
? . - 2013. - R 4. – 5. 29-42.
6. $
, ). ". '
[Q] :
%. . . . / ). ".
$
. – =., 1998. – 35 .
7. 5, .(. F
%<
: /.(. 5, .(.
8. – =., 2010. – 206 .
70
=8 664.144(043)
8 < ;= ` ;
..*, .+., ..
34&! (6& « " # "»
, e-mail [email protected]
* %, " ? Citri-Fi < < -< %
< %. $
? Citri-Fi 1,5 -2 % %. !
, %
% D < <
<.
FUNCTIONAL STUDY OF FLOW CHARACTERISTICS CHEWY
CANDIES
Kurakin A.N.*, Krasin I.B., Kureshova E.A.
FBGOU VPO "Kuban State Technological University", Russia
e-mail: [email protected]
* Corresponding person
Abstract
The influence of dietary fiber orange Citri-Fi and saharozametitelya isomalt on
the structural, mechanical and rheological properties of the candy mass for chewing
candies. Shown that the introduction of orange fiber Citri-Fi at 1.5 -2% has a positive
impact on the structure of the finished chocolates. It has been established that the
functional chewy candies have high consumer properties.
$ D D ?
< < %
< , D?< . , 7 [1],
<
<, ,
? , <
< ?,
? 7
< ? . ( H %
D , < < < .
71
5 — H
, D?
D
<
,
< — D
. &
<
< 7< < ?: , ,
, <
-
.
(
<
< D
D , H
< -
%
, ?
<7
<
<, D?< D [2].
(
<
? U<
< 7
<, ,
, < .
$
H
< 7
< , ? < < ? .
$%&" '" !
5 G
< , < 7 ?
«Citri-Fi» < «
<» ( %) - 7
, D < <.
(
< «
<» <, <
< < - %
- < , <D? , , %
[3], .. D? < < <.
$ H<
<
<
– %
<. F <
< < 8'-1/4, < 5Q-1 < Reotest-2.
F
H< <
<
<<
, , <<
Statistica, Maple, MsExcel.
()!" !
8
?
Citri-Fi
D
<
, D? <
, < %.
72
Q
?
Citri-Fi <
< %
-
<
<. Z
<
7
D? % %
.
( % < %, < <
?D?
? < < ? Citri-Fi, 1-2%, < < < .
( , ? Citri-Fi %
<
7D D.
8 % , ? Citri-Fi 7 (.1). 5<
7 <, , , <
<.
'
1 – ( ? Citri-Fi < < D %
<D < %
! ? Citri-Fi <
(.2), <D .
73
'
2 – &<
< ? Citri-Fi
<7 , D?
H
<, D 1,5%
? Citri-Fi. "7 7 ? Citri-Fi ,
D? <.
$
-
%
<
D H (
? Citri-Fi) .
""
%
< <
<D ? Citri-Fi %.
7 < ? «Citri-Fi»
% - H
, .. <
% . Q <
<
< < <, D<,
?< < <, < < D<.
+%!-/0 3
1.
5
< ?
/
‹%
E.E., & (.(., $
F.8., #.5. // (
. 2007. Q. 5. – R 3 – 5. 26-31.
2.
.# - < %
// 7 . $? . 2007.–R 5-6.–5. 102.
3.
.#. -
< .#., Q
.., ) 8.., Q
.8., 8.(. // 7 . $? . – 2013.–
R 2-3.–5. 79-81.
74
=8 633.63:631.53.026
8 7
=-` `7
8 77
=7 77 7
3 .
.*, ) .., .
.
)) # /, e-mail: [email protected]
*%, " 7 <
%
<
<
-
< <
, ?
<< < <
< <. $
H< D < <
<
< , <
< <
-
<
%
< .
STUDY TEMPERATURE AND HUMIDITY
STORAGE FOR SUGAR BEET POLYMER
HIDEAWAY WITH ANTIMICROBIAL PROPERTIES
Sapronov N.M. *, Morozov A.N., Aksenov D.M.
Russian Research Institute of Sugar Industry, Russia
e-mail: [email protected]
* Corresponding person
Abstract
The influence of external factors on the change of weather temperature and
humidity mezhkornevyh kagatov space and key indicators of conservation of sugar
beet roots stored under shelter polymer with antimicrobial properties. The
experimental data show the positive effect of the investigated polymer ukryvochnogo
material to maintain a stable close to the optimum temperature and humidity
conditions of the physical environment and the reduction of losses kagata mass beet
sucrose during storage.
( < < 7 <
, 7
< < [1].
F
, <, D %
, ??D 75
. '7 H
< <
< %
< <, D?<
%D ? %
7 <
[2].
' < <
< < H<
<
<
< < %
< <
, < [3]. H
, – <
7 <
%
< <
-
< %
, ? << < <
< <.
$%&" '" !
FU
< D % , ? << < 1
3 2013 D? . 5< D 3 : 1 (
); 2 – , < < Toptex; 3 – , << < <
< (
5
) < <
< < #
.
( < ? H< < <
%
.
()!" !
"< <
< <
< 1.
76
'
1 – "< < ( < <
: , 3 6 D , 7 15,4 <<, 11% 7
<
< ; 10 < <, D? < <
< 1…3q5; 23 25 < –
5,5q5; 25 D
7 < , 7 30 + 6,5q5, H
< 28 29
3,8 << ; 1 < , 3 <.
<
< , <
< , < <
< < << <
<,
7 D <7 < < + 7,5 + 0,9q5 <
, < < , < <
< Toptex, < <
<.
" %
(
2) , < 64 99% ?
<
, 88…96%. $ H
< < << <
< << << %
.
77
'
2 – "< $< <
<, ?
<
<
#
, <
D
<
, 32
7 <
4,2 4,3 D < <
< Toptex 17,3 29,8 D < (
3).
'
3 – 5
7 < 32 5
<< < <
< <
<
< <
< <
-
< <
< ( < < + 7,5 + 0,9q5 78
90 95%) ? 7D ,
< 1,7 2,0 7D D 1,2 1,3 7D < < Toptex.
""
' , << < <
<, <
%
< <
<
< #
, < , <
< <
-
< %
<
, 7D
, D < <
.
+%!-/0 3
1. = Toptex // 5. – 2011. - R 11. – 5.
56.
2. 5
.=., =
8.., 8
".=. . E << <, <
%
<
< < // 5. 2013. R 8. 5. 36-39.
3. 5
.=., =
8.., #
8.5. . < <
< <
< < // 5 . 2012. R 8. 5. 33-36.
79
=8 664.681
8 8 ;= 7=< 8 8
*.+., .., 73 ..
34&! (6& « " # "»
, e-mail [email protected]
* >", " EFFECT OF ADDITIVES ON NON-TRADITIONAL FUNCTIONAL
PROPERTIES OF FLOUR CONFECTIONERY
Krasin * I.B., Krasin P.S., Hashpakyants E.A.
FBGOU VPO "Kuban State Technological University", Russia
e-mail [email protected]
* Corresponding person
Abstract
The effect of potato dietary fiber on the structural, mechanical and rheological
properties of the batter. Shown that the introduction of the potato dietary fiber in an
amount of 8% has a positive impact on the structure of the finished wafer sheets.
Found that functional wafer products have high consumer properties.
5
%
? 7 <
U
. $? ? <<
<
<
–
<<,
<<
?<,
%
< %
< < - ?< <,
<
<.
'D %
,
D, <D? < <
<, , D? H
.
= , D D <
< . H
<
< %
? .
( 7
< ?D <
?< <. $? H
D ? < < ?:
7, , , , %, <
,
, , <
.
80
( ? < 7
<<
? . (
D?
< < < < < < < ? , 7D [1].
$%&" '" !
$ H< ? <
, < %
-< <
.
< <
? <
< <
<; D ? 10% - -< -130.
$ % ? <
,
%
. F %
«'
-2» 5
< 5Q-1.
()!" !
< <
< % ? % 7 < %
< <.
% ? <D <,
<
- . ( 72% ?
, < D < 165 /, <
< 90%
<
< < 120 <<.
< ? , <
, <
7, < ? < < .
< ? %
? <
H%%
, <D? <
? , <
? <, %
H%%, <
?
, ?
< ?< <.
( %
-< < (
, ?
, <
), .
D<, < <
, D , , , [2].
81
% (
), <
< < , -
< . ( % ? D, H
<
<< < .
(%
<
% %
<, , <
% – %
%
.
( %
<
%
, << . " < %
<D? <7 D, <
< , . (%
<
D, ..
< < .
$
,
500
450
400
350
300
250
200
150
100
50
0
15
30
(<, <
45
60
'
– < %
< <
;
% ? , %:
5;
8;
10
$< <
<< < %
< %< ? < , D %
, D? < <
.
""
< %
% ? <
82
<
%
%
, ? ?< <.
$
D <
? %
. $ , <
, <
< < < < %
<
.
+%!-/0 3
1. /.., 8.8., 8.$., Q
(.(., 8.8.
$? // $? <7
. R5 –
2007. – 5.32-33.
2. .#. -
<
%
. // (!&
,
$? . 2007.- R5 5.33-37.
83
=8: 664.3.033.6
= ===c
7
=8` 8
("! ..*, 73 .., + .
., ) ..
34&! (6& « " #
"», , e-mail: [email protected]
*%, " T <
%
<. (
%
<
. (
D?
<
, < , < H<
< < <, <<
< < <.
JUSTIFICATION OF MAKING STRUCTURING COMPONENT
INULINSODERZHASCHIE SPREADS
Rylskaya L.A.*, Khripko I.A., Borisova M.M., Kuznetsova V.P.
VPO "Kuban State Technological University" Russia, e-mail: [email protected]
* Corresponding person
Abstract
The purpose of this study was to create new kinds of spreads based on milk fat
and refined deodorized vegetable oils. As a functional component used drugs inulin.
The work was carried out in the selection of a structuring component is determined
by its optimal concentration modes set the emulsification process to produce a
product mixture with rheological characteristics as close to butter.
F < < 7
. Q< <, < %
<<
, H
<, H
< U<<D .
( H
< 7
< < <, <
-
< < < <, <
< - < <, D . $<
< <
<< -
< < D
, %
< <. ( ? < 84
D <, %
D [1].
8
< D ? <, ? 7D <
%
< <
. 8
, U< ?
%
, 7 <. $< < %
<
, < ? ?<
< [2].
T 7 D <
%
< < %
<
.
, , < ? < . < < < < - <
7
H<, <
<
<
, < [3].
( 7 D? :
D?
<
< < , <
H<
<, .
$%&" '" !
" <
H< <
40, 60 70% %
<
, <
<
<
82,5%,
, ? , : Beneo< HP–Gel, Beneo< HPX,
Beneo< ST < Danisco - CREMODAN® SE 334 VEG GRINDSTED® PS 301, D? D %
. †
<
. $
< <<
«
< », D 7< <
<.
$ Beneo< HP–Gel, Beneo< HPX, Beneo< ST < <
1.
Q 1 – E <
5
,
?
,
%
& Beneo< HPX
Beneo HP-Gel,
š99,5
š99,5
<
85
Beneo< ST
š92
5
D
,
%
,
,
?
,
%
5
<, (
, %
Q š0,5
š0,5
š8
>23
š23
š10
4+1
4+1
(
(
< < <
<
4+1
5
( <
< ?< <,
D < D?< H<D?<
<, 7
D <
<7
.
F H< ?<
<
<. !
H<
%
D 1500 /< 3 <.
', , <
? <
<<
<
<<
STATISTIKA.
()!" !
$< < <
.
$
?, 7
D D < <
<7
H
< D D < <?. " 7
<
<, <
<
D?
<
, < , 7D.
< H ? . 5
5%. ( ?
H<, 7
, <
, ? < . <
H< ?D?
<
Beneo< ST.
86
" H< <
. ,
<
<D <. ( D?
<
CREMODAN® SE 334 VEG, GRINDSTED® PS 301. ' 1 H< <7< < .
'
1 - ( <
H< <
40%-
!
,
7
H<
D
, < D?
<
CREMODAN® SE 334 VEG. ( <
- , <,
<D
,
D?
<
< .
D?< H <D D
CREMODAN® SE 334 VEG < H<
<. 5
3-
%
H< (
< 1
10 <, < 55 8005 D CREMODAN® SE 334
VEG 0,2 1,2%.
87
'
2 - !
<
H< ( <<
<
D?
<
, 0,8% 0,6% , 7
. (< H
5-7 < < 65-7005.
""
%
<
Beneo< ST.
$ H
< , 7 .
7 <
D?
<
CREMODAN®
SE 334 VEG. F< 0,8% 0,6% ; 7
.
88
F< < H<
5-7 < < 650
70 5.
' - %
.
+%!-/0 3
1. $ R 2364089 5
2. Glibowski '., Bukowska A. The effect of pH, temperature and heating time on
inulin chemical stability // Acta Scientiarum Polonorum.- Agricultural University of
Poznan. Wydawnictwo Akademii Rolniczej w Poznaniu, 2011 .-Vol. 10,N 2.-P. 189196.
3. #G7 5. $., =< ". 5.// ( 8$ 5
R 1 - 2011.- 5.
36-39.
4. 8 Q.$., _
`.8., ?
(.8., $?. <-.-2003.-R 4, 518-21.
89
=8 664.84.001.8
88 = 7`
7
! ..*, 5# .., !" .., !" ..
34&! (6& « " #
"», , e-mail: [email protected] yandex.ru
*%, " 5 < < < <D
<
<
?
<,
D?
<
<
<,
<
<
<
<
D.
A NEW APPROACH TO FORMULATION OF FROZEN
VEGETABLES MIXTURES
Gavrilina N.V*, Kozhukhova M.A., Volinets A.V., Volinets E.V.
VPO «Kuban State Technological University», Russia,
e-mail: [email protected] yandex.ru
* Corresponding person
Abstract
Given the current requirements for food and based on computer modeling of
formulations frozen vegetable mix of high organoleptic characteristics, balanced
micronutrient composition and prebiotic activity were developed.
5
, D?
< <
- <
< < < <
< %
< <, < <
<
?
<7
.
)< < %
?,
D <, , D
, ? ,
< H<, % ? [1].
-
, 2 ,
, , . 5
<< (F&
%
? <
400 , %
, D , <<
<.
F 7 < – 7 <
? , <<
90
D , , , ?
H
< < ?.
<
,
7 D D ? <.
FU< < D, <
<. F
D <
< %
<
< %< <. ?D? , < <
.
#
7 <
<
?
<, D? < , D << %
<
, < <
<D
. 5?D D , < <
<<
, % E
,
[2-6]. ( <
<
<<<.
( 7 ?
<
< < <
< < < <.
$%&" '" !
FU< 7
?, <
<. =
, , 7, , , D D <
D ?D?< < <. < , <
710 <<, 7
, <
. $
? «7
» <
<
< < < 18°5. $
<
%
(
F5Q 54683-2011)
< < <. " < (7 < <) 5-
7.
E< < < <
. F<D <
<
?D <<
<<
«Mathcad 15» <
, 5.(. !
< [7].
91
()!" !
'
?
, ?? <D <
<
D , ? %
%
< %
< .
(
<
? <
<<
<
,
?
D,
< <, D D.
F
< <
< <, D?< D
, <. #
7
H
80- 7< -
< D < ?, < . (
? < < < <
, < '
. ' < D <, <
< < <,
D D, H
D ?D <
D D.
Q
< ? < < (
80 % ?) - H%%
? % , , , ,
. <
<
, , , <D 7
<
%
, 7D <<.
( 7D? <
< <
< , <<<
< ? 7< <
< [8].
<
«H
», D?
<
. ( «H
»
<
D,
% D ? %
< : K, Mg, Fe, —-
< 5 15-30 % <. < < <
<
7 < < < 30-35 %,
<<D D < (4-5) (250).
<
<
(J),
D?
%
«H
». E
7< < ,
J!80 %.
92
( <
< < <.
'
? < < ? 1,
< 2
Q 1 – ' ? <, %
<
Q
<
& 7
5
=
.
$ $
(J), %
"
R1
33
47
15
5
R2
35
18
15
32
-
R3
35
25
15
25
-
R4
35
45
15
5
R5
35
25
15
25
-
88,1
96,3
94,2
80
94,2
4,8
4,6
5
5
4,8
8 , D , <
<
, ?.
Q 2 – E< ? <, /100
<
5 ?
#
†
!
$?. &
, <
Mg,<
Fe,<
,<
(< 5,<
Z..,
R1
18,58
3,30
0,15
10,76
2,41
1,06
238
27,87
0,59
2,06
1034
12,2
60,99
R2
14,742
1,78
0,1
7,8
3,02
1,04
247,84
18,98
0,68
2,18
906,2
9,5
43,12
R3
16,55
2,63
0,13
9,09
2,68
1,04
246,25
23,4
0,57
2,18
954,6
10,2
51,85
R4
12,75
1,27
0,19
7,03
2,48
0,85
215,25
14,3
0,45
2,18
946,35
9,8
38,7
R5
16,65
2,81
0,18
8,96
2,71
1,06
223,75
23,65
0,77
2,18
954,6
13,3
52,35
( ?
< (250) : 15-17 % K, 11-17 %
Mg, 10-13 % Fe, 36-40 % —-
34-45 % < 5 7D , 5,1-5,5 , <<
<.
""
93
5 < < < <D
<
<
?
<,
D?
<
<
<,
<
<
<
<
D. !
%
? , % < .
+%!-/0 3
1.
=
=.$. $? ? .–=.: "/ , 2007.–240 .
2.
8 =.. F< <
<
<D
<
/ =.. 8, 8.(. =
, 8.#. /,
".8. (
, .. 5
// (
. $? ,
2006, R5. – 5. 65-67
3.
#
/.$. =
<
<
/ /.$. #
, /.(. 8
// E , 2008, R10. – 5. 21-22.
4.
&
/.=. $
-<
< < / /.=. &
, .8. = //
$? : Q -
%, <
, 2006. – 5. 98.
5.
5.. $
// $? <7
, 2004, R 8. – 5. 74-75.
6.
=
(.. =
<
// E , 2008, R5. – 5. 48-49.
7.
).`., !
5.(., F
.$. =
< 7 <7 <
// . $? . – 2006. –R4.
– 5.100-103
8.
E
.8., =.8. < < <
// . $?
. – 2003. –R4. –5.72-74
94
8 3.
7
95
=8 664.2: 622.24
=< 78`
78; 8 =
..1, ..2*, (! 8.9.3, $3! .7.4
1
4)6) !6 «6& «4», 4,
2
!6 «- 4 ""?», 4
3
34&! (6& « " #
"», 3
4
W&& «$# -" #$" »,e-mail: [email protected]
*%, " '
H%% H
< <
?
<
%
,
D?
7< < <; <
7
< , %
( % ), <7
, D <
?
.
WAY OF RECEPTION OF THE REAGENT CONTAINING STARCH
MODIFIED FOR DRILLING
Paskaru K.G.1, Litvyak V.V.2*, Roslyakov Yu.F.3, Ospankulova G.Kh.4
1
BelNIPIneft RUE "PA" Belarusneft ", Republic of Belarus,
2
RUP "Scientific and Practical Center of the National Academy of Sciences Food",
Republic of Belarus
3
FGBOU VPO "Kuban State Technological University", Russian Federation
4
TOO "Kazakh Research Institute of agricultural products
*Corresponding person
Abstract
The highly effective and economic way of reception of a reagent containing
starch modified for the drilling possessing good consumer characteristics is
developed. The received reagent can find wide application in geological prospecting,
oil and gas branch (at drilling of oil and gas chinks), and also other technological
liquids in various industries in which products containing starch are used.
(
?
H%%
,
<
H
<
96
<
?
<
%
. $
7
<D , %
(
% ), <7
, D <
? .
Q, -
[1], D ?
. ( D <
<
, , 7%
, <
/ D < 6 28 <.% . œ
D
D 0,6–6,8%. ' <
?D 0,01 7,4 <.%
/ D ( ) – 0,03–9,60 <.% ,
/ D – 4–36 <.% . ' 1,5 <.% .
<
<
?
[2], DD? ( <.%): <
?
<
– D 70–95, < – %%
5–30.
T – <
?
<
%
, D?
7< < < %
-<< <, H%%
H
<
<
?
<
%
.
$%& '" !
FU
–
<
?
<
%
.
" <
?
<
%
7
H '&-Z"-88.
F
– F5Q 7698, 5Q# 1036, 5Q# 1053.
F < , <
– F5Q
7698 F5Q 26521. = D <
<
<
.
F 7
, – F5Q 7698.
F <
5% <
20º5 – . $ <
D ,
5% <
?
, <
. H
D 7,5 U< (500 <3 ). =
<D 500 <3 . = D <7 <
< 3 . /<. $ <7 . '
<7D <7
, .
97
&< 5% <
?
<D
< < ?< , < .
" <
?
<<< < <
?
15 /<3 ? <
<
«$
<
»
/$† #$% 9.04.2009 . $
?
<
, D < 15 /<3.
" H
D 7,5 U<
. =
<D 500 <3 ?
<
. = ?< < <
D <7 < < 3 . / <. $
<7 <
?
7,5 .
'
<7D <7
3 . /< 30 < (
). !
D ?
<
<
?< < (15 /<3)
<D. 5 < ?
<
?D < (#'-1. (
< (#'-1, < , <
, <
.
!D (#'-1 7, D , <D < D
? <
<. $
<D <, D
<
DD <. <
, D <, D. !
D D << 500 <3
<, 700 <3 .
& <D <, D? < < 2 .
$ <
<
5% H
(
< ) U< 25 D 0,01 . =
<D 500 <3 . = D <7
< < 3 . /<. $ <7 25 . (
<7D <
?
. F <
5% < < 8-
< <
800 < (5-3. &< D. $
D < 25º5 %D
(600
/<).
98
" % <
?
(0,1 =$), 15 /<3, <3/30 <
? <
D .
&< % < ?
6- <
< %-, < (=6 . (< < 30 <. & <D %<
<,
< < < 7 0,2 <3.
"
< D 7
±0,2.
$ % <
<
(#$'), (0,1 =$) <
?
5
/<3, <3/30 < 7 < Hamilton Beach <D 500 <3 . $
<?D 7 <. 5
<
?D <D Dowicil 0,03% 7 <. 5< <7D 5 <. H
< 0,5% (2,5 )
UG< <. 7 <
< – D 20–30 <. H
3% (15 ) U< . 7 <
< – D 5–10 <. H
0,05% (25 <)
U< . 7 <
< –
D 5–10 <. H
<
?
0,5% (2,5 ) U< .
7 <
< – D 20–30
<. H
<
1% (5 ) U< . 7 <
< – D 20 <. H
< <
4% (20 ) U<
. 7 <
< – D 20 <. 5 <
?D <
Rocima 640 0,03% U<. 5< <7D 5 <. *7 <D < #$' D < 25º5. F? <
#$' 60–80 <. &<
% #$' 6- <
< %- < (=-6 . (< < 30 <. &
<D %<
<, < < < 7
0,2 <3.
" <
5%, 5% < <. F -< D
<
<
H
H
. & <D
99
%<
<,
< < 7 0,2 .
<
()!" !
( < <
?
<
%
,
<D? <
?
, D? <, D - <
H
<
?
<
/ <
< 100–200º5
(
< 110–150º5), ?
7
50–100 <.-1 (
/<.), < % – 1–6 << D?<
< < D <7
H
, <
H < < <
< / < 1–5
<.% (<
/ H
, / ,
/ <
).
5
D?< <.
( D:
1. <
? <
: < % F5Q 769978 (
17–20%); < F5Q 7697-82 (
13–
16%); < < <
< < (Q$8); < 7 Q$8; < Q$8; <
< Q$8; < Q$8; < Q$8; < <
Q$8; < Q$8; <
Q$8; < Q$8; < Q$8;
< < Q$8; < < 7 Q$8; < % Q$8; < Q$8; <
Q$8; < 7 Q$8; < Q$8; <
< Q$8; < Q$8; < Q$8; <
<
Q$8; < Q$8; < Q$8; <
Q$8; < Q$8; < < Q$8; <
< 7 Q$8; < % Q$8; <
Q$8; < %
< Q$8;
(<
/ H
, /
,
/
<
)
Q$8;
<
?
Q$8.
2. "
<
: < – %%
Q$8; %
(
%
<
<
200 200000 7) –
D
-<
<7
,
< Q$8; (CaO) Q$8; D<
(KAl(SO4)2×12H2O) Q$8;
Q$8; <
-< Q$8;
Q$8;
100
( <
<
: D D D <
<
<7
R 067 Q$8; < <7 Q$8; < <
H
< 7<
Q$8; , <
Q$8;
Q$8.
8
-
< <
?
<
%
1.
F? '
1 – 8
-
< <
?
<
%
Q
D D?
H: <
?
(
; <7;
< () – <
; (
) ); % <
% –
H
; <; ; 7; ;
.
F?D <
?
Q$8, <
(
) , D H.
= () <
< <<, ? 6–8 <<, 0,5 </.
101
Z
7
< H '&-Z"-88 H ‹Q8 %< «8», D
< < <
D? <:
?' $-# #
$:
< 100 200º5 (
< 110–150º5);
? 7
– 50–100 <–1 (
/<);
< <
% – 1–6 <<;
H <
.
H <
< < ;
?' $" X$:
? ?
80–85 <–1 (
/<);
? 7 90–95 <–1 (
/<).
-< –
H – D <
H, ? 7
<
< <
%, < < H < .
" <
?
<
%
H <
?
D? <
: D<
Q$8; Q$8; Q$8;
< Q$8; %
Q$8; Q$8 .
$ H
< ? 7 ?
?
(H) D %
-< (H).
Z, <
(<, ? 7
, < %), <7D.
$ <
<
1–5 <.% (<
/ H
, / , /
<
). ( <
<
<
D D? (?
<
) [3]:
1)
<
– 7 < %
-
, 7
, < 25% H
, 40% < H
, ? []20D +190º +196º,
0,6–2,0%;
2)
H
– 7 < - ,
55% H
, 65% <
H
, 102
%
, ? []20D +194º, 1–3%;
3)
– 7 <, < 70% H
, %
, ? []20D +192º,
– 10%;
4)
<
– < <, ? []20D +181
+183º, 36–43%.
$
H
D D? , <
? <
<. < H <
<.
< D <
. " <
D < 0,67 <<, % H
< D <.
< < 7 .
"
< <7 <7 <
< < 350 <. = H
< 30 .
"
< <
H
< 7<.
= 1 .
"
, <
7 <D.
' D < < D< < , D? D?< .
$ , ?? <
% . <
<, D?< %< <, , ? .
' , <
<? < –30 +30º5 75%. 5
– 18 < .
<
? <
%
, <
? <
, 7
< <
< 0,67 <<,
D 10–12%, D < 20ºC,
<
D 5%-
< 10 $· < 6 .,
103
D? %D <
?
(0,1 =$) 5–15 /<3 5–8 <3/30 < D H
15 /<3 50 .
""
'
<
?
<
%
H%%, H
< 7< < <
<. F <
, < , <
: % 7, ,
<
, <
, . < < <
<7
%
<
<. ) <
<
?
<7
, <
, , , <
..
+%!-/0 3
1. /
<
, .(. '-
: 8.. R1838365. SU,
=$7 5 09 7/02 / .(. /
<
, ).(. /
<
, (.. #, 5.. (
,
F.. 8
, /.=. /
<
. – . 11.12.1992; . 30.08.1993. – 1993.
2. †7<, 8.. <
<
?
: 8.. R1482929. SU, =$7 5 09 7/00 / 8..
†7<, .. D, 8.. , ).. , .=. $
, ..
8
<
, ).. #
, (._. 5, =.. /, /.$. "
, 8._.
7
, .$. , .. =
, _.. Q
. – . 26.02.1987;
. 30.05.1989. – 1989.
3. , (./. #
< : . / (./. . – =.: (7. 7.,
1986. – 503 .
104
=8 634.1 (470.621)
42.355
7-89
7< < - . 7., =# . ., ) 6. .*
" # ", e-mail: [email protected]
*%, " =
<
<, < 7 ,
D . Z
D < <
<
- . , < D 7 7 <
<D < .
BIOCHEMICAL CHARACTERISTICS OF THE CIRCASSIAN VARIETIES
OFAPPLES
Mugu D. H, Siyukhova N. T., Tazova Z. T.
Maikop state technological university, Russia, e-mail: [email protected]
*Corresponding person
Abstract
The old Circassian varieties of apples have many advantages, such as the high
productivity, the storage characteristic quality and portability. These fruits are the
heritage of the centuries-old horticulture of ancient farmers of Caucasia -Adygs.But,
unfortunately they are forgotten today and only a few are restoring the ancient
gardens.
_
< '
, < 70%
? -
< <. ( ? <
300 . $ ?
<
7
<< < < <
?<.
<
D
<
< . F
,
< 7 < <,
< , < 7 , .
105
Z <
, , .
H%%
7D .
$
<
D D< <
< < <. $ < , , , <
, %<
,
<
, < ?. #
60 H<
D
< , < ?<
, , , <, , D<, <, %
%
,
<, , <
, . ( < ?, , , < 5 ?.
Z< <
< < <, < 7
, D . Z D < <
< - . , < D 7 7 <
<D
< . H
.
$%&" '" !
TD <
. FU :)HH
<,
=7< T
(
).
F .
#
7
< =< 2013 . H
% -105 =, <
%< /D< . 5$.
()!" !
D <
5
-
.
, < <
, , .
< %
? (. 1), , ?, , , %
.
Q 1 – 5
%
? <
<
)HH
<
=7<
T
$, %
$
, %
, </<3
/
, </<3
#, </<3
0,37
0,40
120,4
75,8
6,8
0,42
0,40
136,2
61,2
11,4
0,38
0,35
148,3
66,6
9,2
106
, < 7
. , <
D < ?,
D? < < <. 5 <
<
%
7, D <.
Q < < , 2.
Q 2 – 5
=
, /<3
5
)HH
<
=7<
T
<
/<
5,32
5,24
4,63
1,50
2,06
2,12
0,22
0,19
0,14
0,40
0,28
0,34
<
0,11
( D .
F D D ?
<, , D , D
7
?
<
.
$ <
< <, <, < <
D ? , ,
(< 5) '- (< ').
5
? < < 3.
Q 3 – 5
? 5
5
?,
%
5, %
Q.
, %
,
61,2
8
,
</100
)HH
<
12,6
10,3
0,45
=7<
14,2
12,9
0,34
76,9
T
13,0
11,4
0,35
132,4
12,6
24,4
12,9
19,8
38,0
21,4
$
< , , , %
, , H ?
D < <, '-<< <. "
< <
< < '8 (. 4).
107
Q 4 – E< ' 8
5, %
=.
. .
,%
= ()
/
/<
=.
.
?%
13,0
16,7
10,1
11,8
0,50
0,49
=. . %
?,
</100
%
65,8
16,1
20,6
68,9
9,2
12,6
' 5<
15,7
12,1
0,49
80,6
3,5
9,6
8
13,6
10,5
0,60
64,0
77,7
17,5
14,0
10,6
0,42
56,0
61,2
25,4
15,3
11,4
0,28
54,6
68,8
9,8
=
7
16,0
11,2
0,20
79,3
87,0
26,1
5
< <
(.5).
Q 5 – <
, </<3 <
<
)HH
<
=7<
T
204
34,7
<
<
'
<7
26,3
15,2
3,6
0,012
168
28,4
40,8
26,4
3,4
146
42,5
32,4
25,0
4,8
0,018
0,021
<
, <
< , 7D <
<.
$
D <, D <
, , , %
.
""
$
< <
D?
, 7< =7<. < T
, D )HH
<.
)HH
< D , <
1,5 2,12 /<3. $
< D
T
. $
D
108
<
)HH
<. 5 <,
< <
.
$
< 10,3% 12,9%.
< =7< (12,9 %). 5 ? H
<
7 < . 5
61,2 132,4 </100. $
< D T
(132,4 </100). 8
H
< 7 < .
' <
, 7
(42,5), (4,8) (0,021) < T
. 5 <, <7 , < T
(0,018). 5
)HH
< D (204), < << =7<.
8 <
,
D D '
, 7D
?D , <
< 7 .
)
< < <
'
8 D ?D D .
+%!-/0 3
1.
Q7
.8.,5
.
/=
%./.8.Q7.=
:8.. . -
., 2008252 .;
2.
# ., 5
`. 5 //5
8.
– 20.06.96. – 5.5.
109
=8 663.031.7
87 7
77 4' 6.
.*, - .
.
34&! (6& « " # "»,
, e-mail: [email protected]
*%, " E
– , 7 < .
T – D? .
FU . ( U
< < <.
$
D <, <
< <
, <
< <,
H
< .
DYNAMICS LIGHTENING WINE USING CHITOSAN
Chermi Z.M.*, Ageev N.M.
Kuban State University of Technology,
Russia, e-mail: [email protected]
*Corresponding person
bstract
Chitosan - a sorbent, which has been applied for the treatment of table wines
recently.
Purpose - to assess the brightening effect of chitosan in the processing of table
wines.
Objects of study . As objects of study used white and red table wine stocks
with foreign tones.
The results suggest that chitosan can be used both independently and jointly
with other sorbents, while providing a high quality of clarification.
E
– , 7 < . F
– , H
,
- D <
<
.
110
=
7
<
, < . FD G , 7
.
Z
U <
( < ,
H<
).
E
7
. $
H
< <
7
< ? ( , D? ?).
5 < <, D
, D . (
H< <
<
<< <
<
<, D?< < < <.
$%&" '" !
" H<
,
. , D
.
F
7 < < ?
?
< <
, ? <
< <
.
†, , < , . ( .
<
< <,
< <, < <. ( <, < . (
< .
()!" !
$
( 1) , < < 12 <
<7 , .. 7 <.
8
<
1,0-2,0 /<3. $ H
< U< <7 <. Z
H%%
< <.
111
Q 1 - "< < <
"
$
, . ,
+
2
4
6
12
,
</<3
/<3
3
</<
25
50
100
200
-
0,5
1,0
1,5
2,0
-
300:5
200:10
100:25
1,368
0,311
1,333
1,543
0,121
0,091
0,097
0,090
0,080
0,197
0,197
1,234
0,287
1,320
1,437
0,085
0,072
0,075
0,087
0,072
0,108
0,137
1,101
0,221
1,131
1,119
0,080
0,063
0,069
0,079
0,063
0,088
0,120
1,073
0,058
1,138
1,073
0,070
0,057
0,054
0,058
0,053
0,053
0,088
$ D <
, 2
<
<, < <, 7
%, D
U< . !
D , U< . 7 U< <,
< < 100 </<3.
5 1 <,
<
< <
, 7
, . F
<
< <<
– 5 </<3, , <
.
8
H< < <
< ( 2).
Q 2 - "< < <
"
$
, +
. ,
2
4
6
12
3
3
</<
/<
,
</<3
25
50
100
200
-
-
1,436
1,555
1,333
1,543
112
1,424
1,434
1,134
1,437
1,301
1,331
1,131
1,199
1,234
1,138
1,131
1,073
"
. ,
</<3
/<3
-
0,5
1,0
1,5
2,0
-
+
,
</<3
300:5
200:10
100:25
$
, 2
4
6
12
1,321
1,510
1,357
1,510
1,054
1,254
1,255
1,301
1,347
1,332
1,432
1,016
1,205
1,245
1,270
1,267
1,270
1,270
1,006
1,111
1,111
1,268
1,107
1,138
1,073
1,002
1,054
1,109
8 <, 7
<
<
< <. $< . F
U< : 5%, < – 7 10% . Z
<, 7 .
5 <, < <
< < <
< %. * 6 <
< < . F
12-< <
<
<
< 7
.
""
Q< <, < <, <
< <
, <
<
<, H
< .
+%!-/0 3
1. 8 .=. 5
< << //
. $? . 1995. R 5-6. 5. 5-7.
2. 8 . =. - < <
. - , 1999.-53 .
3. (
.., &
(.., = .8. 5 .
5<%
: Q, 2002. 208 .
4. / 8.). '
<
// (
'
. 2001. R 3. 5. 30-32.
5. _ 8.. -< < <
: 8
%. . . . . .
, 1965. 20 .
113
=8 620.21
8 = ;= 78
.*., >% .., ?! ..
" , , -mail: [email protected]
*%, " , ?, , E - , %
, %, <, <
<
H<
<
/, #
2, #
3.
!
,
7
7
<
%
?, <
< D -
%
.
INFLUENCE OF THE TYPE OF CULINARY PROCESSING ON THE
STRUCTURE OF FUNCTIONAL SUBSTANCES OF MANGOLD
Pershakova T.V., Shubina L.N., Jakovleva T.V.
Russian University of Cooperation, Russia, [email protected]
*Corresponding person
Abstract
Influence of the type of culinary processing on the content of protein,
pectinaceous substances, ascorbic acid, E - carotene, folic acid, riboflavinum,
thiamine, micro and macrocells in mangold grades Lukulus, White silver 2, White
silver 3 is investigated in the article. It is established that while scalding leaves and
petioles of mangold a significant amount of functional substances remains which
makes mangold a prospective ingredient for designing dishes of preventive nutrition.
F
?
< < . Z
< <
? ?. < H
D ?. 7
<
< - <, 7
, <, <, 7
< ?<,
– <
. ( ?
< <
, D?
<
(
1200 ), < < - 7 < . Z
-( ,
&, & <.
( H<, < D
?
<
,
114
, ?, <
, <
<
H<
,
, D? <<
?D ?, .
$%&" '" !
" <
( , &,
& < FFF «5< », ? <
< . <
<, < . F 9.00 10.00 3 . F
?
7, , 7
, ?
, < . 5 7
- 1, D - 10 . $
?, 77 , D < <
.
-
?D?< < <. , << ?
.
F
<
F5Q '
55822-2013. =
< < <
< 15 <, 7
1 <.
F ? <
< 7
<.
$
? << <
<. F?D
< 0,1 NaOH.
8 <
%< <
<. ?
<
< <
< .
" < 5 < < <
<
< 2,6-
%
%
, E - %
<< <
<.
D < '' << <
<. '
%
D<%
< <
<, < < %<<
.
Q< << <
<.
()!" !
< H < . ( 1
.
115
Q 1 - $
< <
, , 5
( 7
( 18,5
19,1
7,2
&
15,3
23,2
6,9
& <
14,4
16,2
7,7
<
<, < 14,4 18,5 . $
H
< <7 < & <. $ < 16,2 19,1 , 7
- 6,9 7,7
. =< << < & <
7
– 22,1 .
( 2 <
<
.
Q 2 - 5
<
, <
, 5
<
( <
7
(
1,83
1,42
1,61
7
0,51
0,32
0,41
&
1,75
1,55
1,67
7
0,59
0,35
0,49
&
1, 61
1,39
1,57
<
7
0,52
0,41
0,49
, 2 <
<, ? . $
?
7 , < 7
. Z
H . 7 <
( .
D?< H <
<
<
<
.
" , <
3
Q 3- 5
<
, <
, < 100 .
5
<
( <
7
(
87,7
54,3
72,4
7
27,6
24,4
26,5
&
84,5
51,2
69,3
7
25,3
23,6
24,1
116
&
86,4
57,3
69,3
<
7
29,3
24,7
26,6
5
, < 7 , < 7.
5<
( -72
7
. 7 - 57,3 <
& <.
( 4 E -
<
,
<
.
Q 4 - 5
E -
<
, <
, < 100 .
5
<
( <
7
(
5,01
5,00
5,00
7
0,09
0,09
0,09
&
4,85
4,85
4,85
7
0,71
0,71
0,71
&
5,32
5,31
5,31
<
7
0,10
0,10
0,10
E -
7.
<.
( 5 %
<
<
.
Q 5 - 5
%
<
, <
, < 100 .
5
<
( <
7
(
0,031
0,022
0,027
7
0,021
0,016
0, 019
&
0,029
0,021
0,027
7
0,019
0, 015
0,017
&
0,032
0,023
0,028
<
7
0,022
0,017
0,021
$ , D <, %
< 20-28 , < , 7
.
( 6 % <
<
.
Q 6 - 5
% <
, <
, < 100 .
117
5
<
(
&
&
<
<
7
7
7
( 7
0,131
0,099
0,127
0,017
0,015
0,016
0,129
0,081
0,0121
0, 016
0, 014
0,015
0, 132
0,114
0,127
0,018
0, 016
0,017
$ D <, % < 21-30
, < 7 , < 7.
( 7 < <
<
Q 7 - 5
< <
, <
, < 100 .
5
<
( <
7
(
0,015
0,007
0,013
7
0,008
0,006
0,007
&
0,016
0,009
0,014
7
0,007
0,005
0,006
&
0, 014
0,008
0,012
<
7
0,006
0,004
0,003
$ D <, < < 12-45 ,
< 7 , < 7.
( 8 < '' <
<
Q 8 - 5
< '' <
, <
, < 100 .
5
<
( <
7
(
0,277
0,256
0,272
7
0,198
0,189
0,192
&
0,283
0,261
0,275
7
0,184
0,179
0,182
&
0,269
0,259
0,266
<
7
0,179
0,169
0,172
118
$ D <, < '' < 5-20 %,
< 7.
""
7
? <
?
< ,
, E - , %
, %, <
<
( , &, & < !
,
7
7
<
%
?, < < D %
.
+%!-/0 3
1.
(
,(."., 8 /.Q. -< <
. –
=.: "7
, 2012. -224 .
2.
F5Q 8756.22-80 $
?. =
. =.: -
, 2006. - 12 .
3.
F5Q 24556-89 $
?. =
< 5. =.: -
, 2009. – 19 .
4.
F5Q 28561-90 $
?. =
? . =.: -
, 2009– 18 .
5.
F5Q ' 55822-2013 F
? . Q . =.: 5%
<,
2013 – 19 . =.: -
, 2008. – 24 .
6.
#.., † F.#. F
-=.: / - Q
<, - 2013. -148 .
7.
F, Q.8., '
, /.#. (%, <
, . – =.: "
< =5$, 2006. -32 .
119
-97
42.112
=8 633.1:547.2
8 8 9
0- 6..*
" # ", ,
e-mail: [email protected]
*%, " ( H
< 7 ; <
, , < 7 .
THE USE OF NON-TRADITIONAL GRAIN RAW MATERIAL IN THE
PRODUCTION OF ETHANOL
Achegu Z.A.*
Maikop state technological University, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
In the given article the peculiarities of grain raw material for ethanol production
are proved. The expediency of using the grain of wheat and rye, and the sorghum are
substantiated. The productive check-up of industrial testing of grinding, cooking,
saccharification and fermentation by adding the grain of sorghum to the mixture of
wheat and rye is completed.
( < < D
, <
, ?
. " H
< , < <
. F ,
<
, . $
< <
H
.F<
, <
? , D ?,
120
D % <
, «» (
, , 7<
.)
( < , <
?
<
, <
< , ? .
$%&" '" !
$ < <
<
< <
%
« 2000=» 5&5( <
<
<
<. F
? 10- 7 < !
«5
- -
» '
< . . !
%
<
<
<
«
– » <
. 'G < G <
<
<<
<
<
-
<.[2]
5< H
D
- <
? : , %, <,
, 7, <, . . 5
<
70-80%
<
H
.! D (
%, <), <
H
< , . <D :
<
,
,
<
, .
Q< <, <
<, 7
, “
” H
.
F<< .
.
5< <.
<, ?, <
7
.
$7.
5
< .
(
- ? .
Q %<
.
=
.
Q( 7).
121
F 7
<
D (
7 < <
7), D , D D , <
.
5
< .
(
- ? .
Q %<
.
=
.
_<.
F , 7D .
!
, < .
Q %<
(-D).
Q .
'
.
, <7 .
F - ? .
Q %<
().
Q .
(
1 1.
Q 1 ž (
(
<
):
5
Z
,
5 ,
5F2,
$7
375
330
370
'
357
390
350
_<
330
430
320
410
300
400
()!" !
5 U<
?
<
, <
.
Z
< , D? D, D, D? < < ?< H
< <,
<
. < < . 5 ž < ,
< 7 . &
61–84 % <, 7, < 7. F #'! .
$ FFF «E (
» ?
H
7 D <, DD?D 7 . !
<
122
7, , , D
<
?
H
.
5 < <<
< , < [3] <
<, < <
, 7 . (
<
< , 7, <
<7, < G
.
(
<,
<
< D ?
.<
, < , D? <
H
, , H
. ( H
< 7, 30 % FFF «E (
».
"
<7
<. < < ? < <,
D?< . < , < , %<
. $
< <
< . F < , 7 %<
. FFF «E
(
» . ( ? <
<D %< . " < < D? %<: %< 2500 L (L-<),
D
< (D
<), '85 30L . <
< -< < D
< , <
. " %<
D
<.
D
< ?
<
< < D
. $
<
? <
<.'
%<
<< 1 <,
< ? (. '). ' 45 < 138-140 05, – 30 < 58 05,
– 72 35 05. "
<
< 7, .(
< D
, . ( , <
2. F 7 ,
< , 7 (2
, 1-
) <7 <
7
< (
). 5<<
</<3 : H%
22,14, 7 336,63, 39,74. #
7
2-
H
<
123
<
<
< D < 7 <. 5
! «5
-
-
»
'
< (. ) ž <
< < %< < – , , ,
<.
( , , , < <
< .
Q 2 – $
<
< ,
< 7, <
</<3
<
</<3
<
<
1,0137
1-
8,6908
8
203,34
<
1,4304
%
0,3572
1-<
2,3-
39,352
0,9072
1-
0,4635
Z%
<
7,1926
Z
, % .
20,600
Z
35,982
! 0,2932
=
$
0,3610
0,2372
Z
< 0,3772
0,5447
Z
2,0470
= 0,4104
Z
25,118
=
0,5644
1,2363
2-
(
0,4100
65,759
1-
72,478
H
64,016
""
1. ( H
< 7 ;
2. (
<
,
, <
7 .
3.F <
, < 7, .
+%!-/0 3
1. 8 ".(. Q
H
/ ".(. 8, 8.8. )
// F
H
?
. ž =.: $?
<, 2005.
– 5. 77-92.
2. 8 ".(. <
/ ".(. 8, (.=. , 8.(. <, 8.8.
124
3.
)
, 8.(. )
, (._. $ //$
, 2011. ž R 4. – 5. 24-25.
8<
(.(. F
?
< , DD? [Q]: ". ... . . , 05.18.01.-
, Q!, 2008. ž 118 .
125
=8 664.014/.019; 664.046.3
9
7-< 78 7 < 7
= +! . $.1*, %! . 2., %' . .2
1
! ( -" #
/, , e-mail:[email protected]
2
3!6 ( -" "",
*%, " <
< < < <.
F
<
< < <
D? <
< .
THE EXPERIMENTAL AND ANALYTICAL FOUNDATION FOR
METHODS OF MEASUREMENT OF FREEZING POINT TEMPERATURE
OF SALMON CAVIAR
Bolshakov E.O.1*, Dibirasulaev M.A2., Abramov L. C.2
The State All-Russian Scientific Research Institute of the Refrigeration Institute,
Russia, e-mail:[email protected]
The Federal State Russian Scientific Research Institute of Fishery, Russia
*Corresponding person
Abstract
The techniques of measurement of the freezing point temperature were studied
and the measuring device of freezing point temperature was chosen.
The technique of definition of freezing point temperature of salmon caviar for the
foundation of optimal meanings of cooling media parameters was established and the
dependence of value of freezing point temperature on content of salt in caviar was
determined.
( < <
< '
(QF, < << ? '
? , < . Z
<
7
?D? , , <
126
(), D? <<
, ?
.
F< 7 <
< .
$%&" '" !
& < 2,9-9 %.
()!" !
$ <
< < D
H
.
F
< <, D?< < < ,
? . Z
<
< ? =.(. /
<
< 1718 .
2-
' < <
?:
't
C
˜ K '
m
,
:
Ÿt – < < D <;
5 – ? 1000 ;
m – <
?;
– , < .
= 1,86 •/<
, . = 3,9 •/<
,
<
(t' ) < <
, <
<
<.
F t' <
<< <
. 8 <
<< ?D <
< %
%%
D 0,1 °5 <
<
D 60 .
$ <
< < <
(
1), H
<
t' (
2) (
1).
127
'
1 – Q<
<< < U <
(<
)
F 7 < (
1 2) (r = 80 /).
$ <
< <
D. t' D ? , 1 < D? (
2).
'
2 – Q<
<< < U (
)
Q< <, t', t < < <
< ? .
$ H< D t'
2 <
: << <
<
(F5'-1), - << <-
< (5-203.2).
128
Z< <
D t' <
.
8 , t'
< << < 0,001±0,0005
°5, D < <
< <
. " D D, < 3 % 9 % t' < 1,593 ° < 6,318 °5, t' 6% – < 3,290 °5. ( 0,013 °5 0,036 °5.
Q – & < (°5) %:
, %
R <.
0 (. )
3
6
9
1
–0,001
–1,598
–3,311
–6,305
2
–0,001
–1,575
–3,248
–6,331
3
–0,001
–1,606
–3,311
–6,319
–0,001
–1,593
–3,290
–6,318
x
s
0,000
0,016
0,036
0,013
F
,
H<
D
< < F5'-1
, < < < <
7 «'8))
&8=)'&8)» «)Q &8=)'&8_», < < < <. $ H
< H D . 5
, F5'-1 < < <<.
Z< D t' << <-
< .
Q 4 0 %, 3,5
%, 4,2 % 5 % <
< <-
< 5203.2, t D <
<<
<
.
< 7
<
< 5-203.2 ?
< t , <
< <<
<.
$
H
<
H< <
< <
.
3 ÷ 6 <
< < .
129
'
3 – Q<
<< <
.
'
4 - Q<
<< <
< 3,5 %.
'
5 - Q<
<< <
< 4,2 %.
130
'
6 - Q<
<< <
< 5 %.
<
<< , (
3) < <
<, <
< < (. 4 - 6) < <
<
<
.
" 4 5 D, < <<< < (3,5 % 4,2 %) 0,4 °5 < < 5,0 °5 < 5,4 °5. ( < (3,5 % 4,2 %) < 0,6 °5 <
2,1 < 2,7 °5. Z D < 0,4 ÷ 0,6 °5 7 0,7 % D <
< .
8 <
<< D <
< 0,0 %, 3,5
%, 4,2 % 5 % (. 4 ÷ 6) , < < , <
< <
<
<.
""
1. $
H< < <
< < 0 %,2,9 %, 3,5 %, 4,2 % 5 %.
2. !
, < < 0,9 °5, < 3,5 % 5,0 % < 5,0 °5 < 5,5 °5.
3. " < < < <
<-
< 0,05 °5.
131
=8 664.76.016.3
= 7
=
' $.8.*
34&! (6& " – !6, e-mail: [email protected]
*%, " ( <
< <
. Q
: 7
7
, D? .
DEEP COMPLEX PROCESSING OF GROATS
Eremina O. Yu.*
State University-Education-Sciance-Produuction Complex, Russia
e-mail: [email protected]
*Corresponding person
bstract
The article presents the technology for deep complex processing of groats with
the description of parameters of the process. The technology allows to obtain two
innovative product: concentrate cereal liquid and powder cereal groats, used for
production of various food groups.
( ? < <
< .
"
<
D
7
< 7 , H
<D, [1]. F
,
D , , H
< <
, D? 7 [2].
< <? D < <
, D?< %
<: < ,
D? D ?D ; <
, ,
, < < ; ,
D
< ; H
.
132
$%&" '" !
FU< : F5Q 5550,
F5Q 3034, 7
7%
F5Q 572.
()!" !
Q
<
D? .
, 7D D? , D
D , H
<
, <
D ?
, D? < <
<
.
< ? < , < 7D 4,0 <<. < <
<
(
2,2). F
, <
, < H
<< %
<, H
< H D <
[3]. < , <D < <
7, H
< < H
H <.
" H
D H, ?
, <
D %< <
D.
(
D D %<
<
D
D?
<. ( <
$10 D < 18-20 º5 <
< 7 1:10 ?
<
<7 . " %<
<
, D, 2-3 D , .
&< D <
D <
H
, 4,7. (
<
H<
<
. '
<
D < 1820 º5 <
< 7 1:5 ?
< <7 <
.
(
-%< , <
D? , H<< <, 7
, 7
<7
. Q< D < <
<
<. (
<
D 2/3 <
7 : H 1:10, D < 55 º5,
D D %<< < <
.
Z <
U< : %<
133
1:10, ?
<7D < 55 º5 D .
Z
6- . $ 5 < 55 º5, <7 < ?
5-10 <, 1 < D
65 º5 D %<
, <7 D
.
$
H (% I) D. F7D < H %D % H (% II) 7
.
I II <7D, <7D, %D D .
( H , D?< < 60 º5. ( H <
? 56-75 %, <
?, D , <.
( H D , D? < ?D?< ?
<,
?< < , <, < H< <
. < , < < <
<, << < H<
, %
<
.
E ?D , , 7
< <? < 0-18 º5 75 % . 5
– 1 .
7
, 7 H
, <
D
7D . " 7 D 7D
D D 5-70 D
,
7 7
<
14%. $< 5-70:
- 7
– < 7 90 º5, 3,5-7,0 /<2, 7 20-60 <;
- 7
– < 7 90 º5, 2,85-5,7 /<2, 7 20-80 <;
- 7
7 – < 7 90 º5, 6,2 /<2, 7 80-90 <.
< 7
7
<
7
<
< 0,5 <<.
$
<
«$
», < . <
134
<
, ?
R 067, 7 2 %.
$
7 , < <? <
7 25 °5 , 7D? 75 %. 5
7
D 10-12 <.
$
7
D
<
?
D? <7
, ?
< <
? , , < H<
<
.
""
( <
: 7 ? 7
, D? < < < < < <.
+%!-/0 3
1 , (. – ? / (.
// E
. – 2009. - R 5.– 5. 44-46.
2 &
, 8.5. '
< / 8.5. &
, /.8. , ).(.
/
// E . – 2007. - R 3. – 5. 68-69.
3 Q.., )< F.`. '
<<
<
H
// =
% «$
: ». - F, 10-11 , 2002 . – 5. 131-132.
135
=8 664.865.53.03
8 8 != $..*, .., [email protected] .., -0 .?.
! ( -" "
"'/ /, ,
e-mail: [email protected]
*%, " <
%
? 7
7< < <
. ( <
, G
<
.
$
7
<G
5(*-
. Q %
<
7 <
. ( , ? < 7 , < . ( <7<
< . < ? 7
D.
'
<
% %
? 7
< . =
% <D
D D , <
< ?.
EFFECT OF HEAT TREATMENT ON PROTOPECTIN HYDROLYSIS OF
FRUITS AND VEGETABLE RAW MATERIAL
Klueva O.A.*, Korovkina N.V., Korolev A.A., Megerdichev E.Ya.
Russian Research Institute of Canning and Vegetable-Drying Industry, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
The possibility of obtaining fruit and vegetable powders with a high content of
soluble pectin was investigated. Carrot, pumpkin and black currant were used as the
raw materials. Blanching process was carried out by treating pre-shredded raw
materials in a microwave field. Also the effect of powder fractional composition to its
solubility in water was investigated. As a result, studies have shown that temperature
of pectins hydrolysis has a greater influence to the process than its duration. In raw
material with a smaller pH, intensity of protopectin hydrolysis increases.
Accumulation of soluble pectins improved ability the product to recover. Solubility
136
of fruit and vegetable powder various fractions increases in inversely proportion to
particle size. Finely dispersed fractions have more developed surface area, which
contributes to accelerating the transition the soluble substances to water.
$
< ? 7
< ? , D
<
7
, 7 <, <D? <
.
$
? 7 <
<< , < <
%, D?
< %
<<, < H, <
<
<< 7. $ < 7
D< H< D 7
< 7.
#7
7
? %
< < <, D?< < . F
7
–
, < 5(* H.
F
D ?
H
<
< UG<
. $ H
< H <
< <
5(* < G , 10-20 , < .
( 7
?
< ,
< 80-85 °5. & G <D
<
7
?
7 [1, 2]. Q, 7
<
, D 7
, < 7 7 <
?, <
, ó7 H%% ?
7D D .
! <
<
– 7
, , <
? < .
!
, 1% ? 7
,
, .
$%&" '" !
( <
D, G
<
.
T <
‹H 7
< <
100, 110, 120, 130 5 5 10 <.
137
_
G
<
Q <
< <? <
<
80 90 º5 H
1 2 .
$
(7
) <
, <
<
, <D
.
Q
D 5(*-
D?
5(*-
,
?G
<
<
< ? <
?
D 3 ( <
?
D 2 (. !
G
< < < 0,01 1 </<. 5(*- 2375 =.
=
&
< <
< 15 <<, G
< D
5(*-
D 0,2 </<. $
5(*-
90 <. $ H
< <
<7
86,4 20,0%. $
7 <
< 6,0%, < 7
<.
# G < < ? ( G D
?
), < , < 7.
8 D?< <: 7, 7 D 0,0001 , H
< ? ,
85 5, 20 < <
. $
H
7 < % < , %
<
. < 7 7% < 105
5 <.
" 7 <
<
?D 6 %. '
<
% 7
D? <
: < <7 < < , <?G #D 7 %. F
7 < % <<
< . < 7 < < 105 5 <
D D . & < %<
<
7
7, < < 7
0,5%. $
<
D D 7 .
()!" !
8 <
<
7
< << , , , < D ? <. $
< 100 5 < 7
138
5 <, , G <, D
. Q , . <7 <
7
< <
130 5 10 <.
" < < 7<
, < ?, 1, , < <
, H
< , ?.
Q 1 –
7
<
<
<
Q<, 5
$
,
<
100
110
120
130
100
110
120
130
5
5
5
5
10
10
10
10
10,0
12,4
20,6
25,6
11,7
16,5
22,0
24,4
<
! <, %
< ?
0,0
0,8
0,9
1,5
0,8
0,3
0,9
1,9
<, <
, 120 5
<
<
7
<
< 5-10 <, H
< < , ?D H
<D H G 7. ( < ? ?
D < 1%.
( < 7
?
%
? <
<
< 2, , < 7 , < , < %
? ? <
. F
H
D 10 < .
Q 2 – < ? <
< 7
Q<
, 5
$
,
<
5 G
5
?, % <
D
?
<
<
14,8
12,8
2,0
139
"
<
? ?<
, %
13,5
Q<
, 5
$
,
<
100
110
120
130
100
110
120
130
5
5
5
5
10
10
10
10
5
?, % <
D
?
<
<
21,4
18,5
18,0
8,6
17,2
19,1
15,2
11,8
15,4
14,6
9,3
5,4
9,6
10,2
8,3
5,2
6,0
3,9
8,7
3,2
7,6
8,9
6,9
6,6
"
<
? ?<
, %
28,0
21,1
48,3
37,2
44,2
46,6
45,4
55,8
( 5(*-
, < ? 7
<7
5,8%. $ H
< <
?< ? 41,6 55,4%, U < < .
(
< , 5(*- <
< 80-90 5 H
<
< 86-40%. 5
7
<
U .
5
<
7
5(*-7
< ? <
7
<
D <, < 7.
!, < ?, < , < 7 ? 7
, G
<
, <D? 2,5-3,0, <
. ( , <D?< D D, G , D ,
G
<
( 3).
Q 3 – ( G
<
?
5
?, %
Z
, /
<, q5
<
<
5G
1/80
2/80
2/90
2,70
2,62
2,81
2,83
1,87
1,83
1,57
1,43
0,82
0,79
1,24
1,40
140
"
<
? ?<
, %
30,4
30,1
44,1
49,5
( < 80 5 ? < <
< <
7
, < 80 º5, 90 º5, <
5,9%
<D
, < < <. , <
.
$ H
< 7 < G
<
? – 16-23%, <
51-70%.
Z<
<
<
4.
Q 4 – '
<
% ? 7
(% <)
/
< , <<
0,5
0,5 – 0,25
0,25 – 0,15
0,15 – 0,1
0,1 – 0,07
< 0,07
*
<
Q
=
60,0
65,0
68,6
70,0
69,0
85,0
68,3
70,0
71,35
72,8
74,8
75,9
37,5
48,6
52,9
54,6
59,6
60,6
8 H< , <
% < .
=
% <D 7D D , < < ?
""
8 H< , 7
<
< 120-130 5 7 , 7
<
< 100-110 5
<
% ? , 7
7 < , , < .
H<
?
, 7 < ?
% < ?,
<
7
. < ,
<
< ? 7
.
+%!-/0 3
1. $ ' R 2315534, .. R 3, 2008. A23L 3/01.
2. $ ' R 2154969, 1999, A23L2/14.
141
=8 664.642.2
8 8``
SACCHAROMYCES CEREVISIAE
6 .(.1, +"0 ..2*
1
34&! " " " '"#
$"", 2
! &0)) # /
#$, ,
e-mail: [email protected]
* %, " ( Saccharomyces cerevisiae. $
, <
<
, G .
RESEARCH OF INFLUENCE OF SPICES ON YEAST SACCHAROMYCES
CEREVISIAE
Zakuyeva S.R.1, Bykovchenko T.V.2*
1
Moscow State University Food Production, Russia
2
State Scientific Research Institute Baking Industry, , Russia,
e-mail: [email protected]
*Corresponding person
Abstract
This article presents the results of studies of the effect of spices on the growth
of baking yeast Saccharomyces cerevisiae. It has been shown that the use of spices
can both stimulate and inhibit the growth of yeasts and depends on the type of spices
and its concentration in the medium.
$
D <
,
<, % , ? %
(, , .) [1].
(7D <
<
< D Saccharomyces cerevisiae. F
D < <, <
< ?
%
<
: , U<, , , <. 5 < <
, D?D
< < < <, D , 7 <
<
D [1].
142
$ D %
– . < , , ; D . F <
%
D, <
<< ?< H%< << . $
<<
H
,
<
%
-< , <
< %
< [2, 3, 4, 5].
( H< F5E$ H< D S. cerevisiae.
$%&" '" !
$ U< S. cerevisiae 69 F5E$, << , D? :
<, <, , H
. ( < H< D? : 0%, 0,2%, 0,5%, 3%. $
D?< D
(
-
) 20 < 0,5 .
*D 7<< S. cerevisiae 69 ? D 8
#. < 30 5 . "
D 10% -
< 30°5 . &< <
< . 3-
< < [6].
" 7D <
< . ( <
<D D 7
< < H
(
H
0,5% < <).
E
< <
< <
D
[7].
()!" !
$
.
143
Q - -
<
< , 108 ./< (% R <
), , %
0
0,2
0,5
3,0
1 '
<
3,9 (100%)
4,8 (123%)
3,8 (97%)
3,8 (97%)
2 Q<
3,9 (100%)
3,4 (87%)
3,3 (85%)
2,5 (64%)
3 * 3,9 (100%)
3,9 (100%)
4,0 (103%) 2,6 (67%)
4 Z
3,9 (100%)
3,8 (97%)
4,8 (123%) 2,3 (59%)
, <D? D? : < 0,2% H
0,5%. $ D? 23% (
D <).
<
: 0,2% 0,5%, < 0,5% 3,0%, H
0,2%.
D? < ( 0,2% ), 3,0% H
< 3,0%.
Q< <, 3,0% D? < , < <.
" 7
<D?
H
7D . '
7 G
U<
D <.
E, < , 7<
< 7
<
(
7
%
D ) D < (
– H
).
Q< <, , H
0,5% 7
7 G
<
.
""
!
, G .
5<D? : < 0,2% H
0,5%. $ D? 23% (
D <).
144
D? < , < <, 3,0%, < .
" 7
H
0,5%, H
< D 7 G
<
.
+%!-/0 3
1.
8%, F.(. =
[Q] /
F.(. 8%; 5.-$. %. . . <- (5$ F5E$). – 5$.: #, 2003. - 221 .
2. "., 5<< $. 5
. E
/ ". , $. 5<< (.- .). – $. . . . . . , . `. . #
. –5$.: "
«$
%», 2012. – 444 ., ., .
3. " ". =. 5
< ? <
/ ". =. ", =. ".
/G, ". 8. ; . 7-
. . – =. : #F=. /
, 2011. – 886 .: - (/7 ).
4. $
(.(. ( . (, , < / (.(.
$
. - =., «$? <7
», 1975. - 208 .
5.
T
, Q.#. 7
7 <
%
%
<
D [Q] /
Q.#. T
, .. 5<G, Q.(. #
// «E
'
» - R
6. - 2013. - 5. 27-29.
6. $
, '.". =
[Q] / '.". $
, Q..
#
. - =.: F5E$. – 2001. - 54 .
7. D %
/ 8.$. , '.". $
, =..
D
, /.Q. (
, Q.(., #
, .. "<, /.8. ‹
,
.=. , F.8. 5
, ).$. '
. - =
. – F5E$. - 2012
. – 31 .
145
=8 664.6
–c
7
, 8 7 ASPERGILLUS NIGER
.., Q ..*
«– 4 ""?»,
4, e-mail:[email protected]
*
%, " $
< G <
< <. Q
?, G <, , , H
<
%
7D 7 <. 5 <
< 7 < G 7 <
<
?. ( H<, < < <. Z ? <D <. <
D?< <: ? DD «<
» <.
( < G 7 –
. F < D?<
<, , , , , <
. $
– < <
, D? ? <7
.
THE PROSPECT OF USING CHITIN-GLUCAN COMPLEXES ISOLATED
FROM BIOMASS ASPERGILLUS NIGER
Trotskaya T.P., Hushcha E.T.*
Republican Unitary Enterprise "Scientific and Practical Center of the National
Academy of Sciences of Belarus Food" Belarus, e-mail: [email protected]
*Corresponding person
Abstract
Healthy lifestyles and the prevention of diseases is becoming increasingly
important in today's world. Toxic substances, heavy metals, nitrates, pesticides,
electromagnetic and ultraviolet radiation slowly destroying our bodies. Every year,
our body weakens more and can not independently remove harmful substances. In
this regard, recent emphasis sorbents. These substances are able to conduct a
comprehensive cleanup of the whole organism. Their action can be described as
follows: harmful substances like to lie in the «lock» and excreted.
Recently becoming increasingly widespread chitin - a natural absorber. It is a
major constituent of the skeleton of insects, crustaceans, fungi, bacteria, yeast, and
146
diatoms. Since bread - one of the most used food population are invited to enter
sorbing substance as an additive in products baking industry.
( 1811 . % < H. Braconnot < «%».
E (C8H13NO5)n (%. chitine, . . ¡¢£¤¥: — , ,
) – ? .
E<
: –N––D–D
–2–<, < N–D
<, < b–(1,4)–
<
<.
E <
D <. F
< < D <,
, , , <
. E
< , < <, ?
<, < < <.
F
< D <, < , < < < <, <, < <
H<<, < H
<, <, –D
< (E), <, D < %<, < < [1].
E–D
G <
, %D 7, , H
, D %
< <, <
%
?
, , 7, [2].
<.
" # < < <, .. ?
.
#
7
< –D
< < Aspergillus niger, <
<7 <7 <
< <
. $ 1 <
230 < Aspergillus niger
[3].
5
7 <
–D
< < <
Aspergillus niger [4,5].
Aspergillus niger, D?
<
<
< , <
20–25%
. ( –D
< H
, 147
, H
< < <.
–D
< < Aspergillus niger 3– 4– << < , [6].
D <
–
D
< <, U<< .
F –D
,
< Aspergillus niger <7
<<
< < [7].
E-D
< – . (
<
H
D? <
, < <7
, ?G ?< <, .
$%&" '" !
< D –D
< , [5]. <
Aspergillus niger, <
F8F
«5 <» (. 5, ,
' #), < < .
$ : < – ,
<
9 %, <
1:5, <
– 0,25 , < – 98 05.
(
: < – ,
<
9 %, <
1:4, <
– 0,25 , < – 98 05.
Q : < – ,
<
7,1 %, <
1:15, <
– 2 , < – 20 05.
$
G < Aspergillus
niger – <
F8F
«5 <».
$ D? Q$8::
– F5Q 13496.3–92 .2, – F5Q
26226–95 .2, – F5Q 13496.4–93 .2,
– F5Q 13496.15–97 .5, – F5Q 13496.2–91, –
F5Q 26570–95 .2, %
%
– F5Q 26657–97 .4.
148
()!" !
' < Aspergillus niger – <
.
Q – Z < Aspergillus niger
R
$
&, %
/
1
=
85,50
2
=
15,50
3
=
19,00
4
=
1,23
5
=
20,80
6
5
2,60
7
5
%
%
0,08
$
< , < Aspergillus niger,
D? < <
, <
7 ?
<7
.
""
$
< Aspergillus niger G
<,
–D
<, < <
< < < , <D 7
<. (
7< <
% < D ?
<7
.
+%!-/0 3
1. %
).$. E : , , %
–
< / E . – =.:
, 2002. – 365 .
2. 5 .., (
.8., (<
(.$. E . $
,
<. =.: , 2002 .– 362 .
3. $, '
R 2043995, . 5 08 ( 37/08, 5 12 ' 19/04. 5
D–
<.
4. $, 5‹8 R 4806474, . 5 12 ' 19/04, 5 12 R 1/685. $
% <
D <
<. '†
–< 1990 2 ) 373$.
5. =.. =
<
% –D
< < Aspergillus niger: 8
%. . . . .
...: 5. 03.00.23 / =
; [. . . –].
– : 2001. – 19,[1] .: .; 21 <.
6. &.8. $
–D
< : % ...:
03.00.23 / &
8
; [. . . –
]. – : #..: 2000. – 19,[1] .: .; 20 <.
149
=8 664.66.662
= 9= =< 8 ` ` 8= '0 .9.*, 0 $.., ' ..
! &0))+6 #$, ,
e-mail: [email protected]
*%, " ( 7
?
? H
. ( H
c ?
«Z
» < ?< %
-
< 7<,
< < <
<, D?< <<
.
DEVELOPMENT OF FORMULATIONS AND TECHNOLOGIES OF
EXTRUSION AND BAKERY PRODUCTS OF LOW HUMIDITY OF
PROCESSED TRITICALE GRAIN
Dremucheva G.F. *, Karchevskaya O.E., Smirnova S.A.
GNU GOSNIIHP RAAS, Russia, e-mail: [email protected]
*Corresponding person
Abstract
The article contains results of studies of the use of vegetable raw materials with
increased nutritional value and food additives of natural origin in extrusion
technology and bakery products of low humidity. The studies developed technologies
and recipes for bread sticks and extrusion products of grain processing products
triticale with a dietary supplement "Erakond" and fine vegetable and fruit and berry
powders produced using innovative method that provides maximum preservation of
biological value of raw materials.
( < < % U<
H
(
, 7, ) < < < (
, ,
, < .).
150
7
?
? 7 .
< < D , D? 7
D,
D 7 <D? <
. Q ?D <
<,
7
5 7 ?
<7
#. Q 7
<
, H
< 7
, <
7 .
( F5E$ < (Q-17 Q,
! "
& 5E '85E) [1, 2, 3]. 5 D 7 <
D H
, .. . " ? <
- <
<
? «Z
» ? %
7, < <
<, D?<
<<
.
$%&" '" !
( :
- Q Q-17 D?< <:
710-740 /, 51-67 %, 14-18 %;
- ?D «Z
» – %
, < D (Q! 9199-001-7377405708) D? < < <.
«Z
» - 7
<
-
, %, – %, <D? . =
– 5,0%, %
3-4 /, pH 4,8 5,4;
- ? %
-
7 ,
<
, , , , ? %
<
(Q! 9164-001-312301001-2013) D <
<
< H . ( 7
– ,
? < D, <
– 8 %, <
– 7 %.
$ <
<. $
H
? <
< H < 7
H < «
-37»
(<).
F ? < H%%
<
,
151
%
-<< <, , (
)
, ? < 5
< 5Q1.
()!" !
7
,
<
(
,
%
.) H
( < ,
<, , ?
<
< , ?
7
.).
<
< < %
-<< <
H
.
!
, 12 %, – 3,5 , <
– 5,5 %, – 220-280 .
F (7 , <,
, ) (
) < %
-< H
(
, H%% 7,
U< <, <
, D? ),
D? H
.
$
7 , ?< 7< , ,
<
, , , ?
«Z
».
'
– Z
""
H
. !
, < 7
D (
, ?
«Z
», ? %
-
7)
152
H
< < %
-<< < .
+%!-/0 3
1. F.)., "< ., 8.. < //
«E
'
». =
: 2013. – R 5. – 5. 28-29.
2. F.)., "< .. F < //
«E
'
». =
: 2011. – R 3. – 5. 20-22.
3. "< .., F.). < // «E
'
». =
: 2012. –
R 2. – 5. 48-49.
153
=8 664.2:557.15
8 7< ;7
7 8
..*, + 6.
., 3# ..
! ()) #" #$
, e-mail: [email protected]
*%, " $
D ?
D
< (
) < < .
" %< D < ?,
D? ? ('(), < D < D?< H
<
<
Tescan Mira LMU. !
, <7 %<
<
D % <. =
(
) %
< , <
%<
, , D
<.
ACTION OF AMYLOLYTIC ENZYMES UPON
NATIVE STARCHES IN HETEROGENEOUS MEDIUM
Lukin N.D.*, Borodina Z.M., Papakhin A.A.
All-Russian Research Institute for Starch Products
Russia, e-mail: [email protected]
*Corresponding person
Abstract
The research has been carried out to study action of clarified glucoamylase
upon native (non-gelatinized) starch of different kinds in aqueous media at
temperature below initial point of its gelatinization. Action of enzyme was estimated
by accumulation of dry solubles, reducing substances (RS), their carbohydrate
content in substrate during hydrolysis and studying of starch grains at scanning
electronic microscope Tescan Mira LMU. It was established, that potato starch has
the lowest enzymatic attack ability. Microscope examination of samples (sediments)
of cereal and potato starch has shown the difference in surface of grains that proves
data of foreign researches about influence of structural properties of native starches
on action of enzymes, in particular, glucoamylase
154
5
H%%
<
?
, D? 7
< <
, < 7 <
.
)
< <
<, D?
< %
-<< <.
F< < < ? <<
<
%<
.
( %<
<
'
< , , < < D
%<
, , D? ?, << , < %
-< [1, 2, 3].
$ < < , %<
, , D <.
Z
<
– <
%
<, <
, < < <, D
, D
-%
.
( D %<
< D 7 < <
, , <
%
<.
$ , 7D
<
%<
<
D
< ( 3.2.1.3), D? -1,4- -1,6
< < ? <
D
D?
<
< [2,3,4].
T ? – < << D
<.
$%&" '" !
( U
<7 <
: , %, 7 <
.
( <
< ?
D
< (
–
Aspergillus niger) Optide L-400 %< Genencor Int, (5‹8).
155
=
%<
< <
< D D? :
x < ? (5() 35 %, 4,3;
x D
< (1:50) 15 . 5/ 5( <;
x < <7D?< 100 < 72 < 55±1 5 – <;
x < < <-%
% D? <
;
x 7 < 45…50 5 < < /&=.
( < D? <
:
- < ? % – <
% %
<< < %< Bischoff, <
8120 %
<
'-454#2=;
- %
< < (
) <
DMLM %< Leica D?< H
< <
< Tescan Mira LMU;
- < ? <
< ‹FE;
- , ?, – < <
< <
<.
()!" !
$ < <, < .1.
Q 1 – E < <
$
<
<
5(, %
#
, % 5(
'
<
-, % 5(
<
%
$7
89,20
90,20
87,80
90,60
0,22
0,10
0,48
0,43
0,23
0,21
0,23
0,36
" < < ? <, .. % <
< (55 5) << ?
D
< Asp.niger
Optidex L-400 . 2 . 1 D <
< [5,6,7].
156
Q 2 – ' <
<< D
< Optidex L-400
<
<
<
%
$7
5(,
%
16,9
21,3
22,3
23,9
25,5
6,0
8,0
8,4
9,9
11,6
15,9
20,3
21,5
23,1
24,7
16,2
19,6
20,5
21,8
23,9
$
,
8
24
32
48
72
8
24
32
48
72
8
24
32
48
72
8
24
32
48
72
E %
!
, % 5(
D
97,74
96,53
96,16
95,18
94,3
95,03
95,04
95,06
95,00
94,40
97,67
96,37
95,80
95,62
94,00
98,31
95,80
95,00
94,75
92,60
=- =
-
1,38
2,78
3,18
4,21
5,02
1,13
1,92
2,70
2,73
3,20
1,49
3,09
3,68
4,38
6,07
1,70
4,23
5,04
5,25
7,42
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
'(
(=5*
% 5(
% 5(
%
0,88
0,69
0,65
0,61
0,68
3,84
3,04
1,62
2,30
2,41
0,84
0,54
0,53
0,00
0,00
0,00
0,00
0,00
0,00
0,00
98,58
98,22
98,10
97,7
97,3
95,70
96,20
96,70
96,60
96,30
95,70
98,20
98,00
98,30
97,50
99,3
98,35
98,03
98,00
97,10
16,66
20,92
21,88
23,35
24,81
5,74
7,70
8,12
9,56
11,17
15,22
19,93
21,07
22,71
24,08
16,09
19,28
20,10
21,36
23,21
$ < < ? % , <
<
7
%<
<
D <
<, , , <
U
< < <.
8 < < ?
<<
D
D (8 ). $ H
< <
1,4…1,7 % <
1,13 % %
, <
((=5) – 0,88…0,84 % <
3,84% %
. ( <
% 7
< (=5 . $ % <
<7 D
(=5.
157
'
1 – "< ? (5() D? (Z) % < Optidex L-400
5
D? % <
97…99 %, <
: , D
, 5.
D
? < <
<D D % (.3).
Q 3 – ' ? < D
< 72 R
<
<
=
5( ,
'
< ?
, $
<
, F
,
1
8<
47,95
15,81
10,18
2,02
2
%
51,1
7,31
3,20
0,35
3
46,2
14,82
10,00
1,24
4
$7
50,75
19,84
7,40
1,07
* % 5( – 5( < %
5(*
58,40
21,25
56,40
55,72
5( %
%
F
,
5(*
19,96
41,60
40,25
20,15
22,47
78,74
43,6
44,27
""
!
, <7 %<
<
D D
< < % <, U < <.
< < (<
, 7) < D.
" D ? < D
< (t=55 C, pH=4,3, £=72 ) D, < 158
55-58%, % – 21%. $ H
< 5( (
) < 42…45 % 79 %
.
=
< (
) D?< H
< <
(.3) , <D %
< D
< <, <
< < <, ..
<
%.
8 <
%<
<
%
<, D?
D
%
(
<) [8,9,10], < ( <
<.
+%!-/0 3
1. .=., 8.`. Q
%< .–
=.:
«Z», 2000. – 5. 190.
2. Leach H.W., Schoch T.J. Structure of the starch granule II: Action of various
amylases on granular starches // Cereal Chem. – 1961. – 38.
3. / .". #
&.=. . < << <
%<
// "
8$. – 2011. – R 12. – 5 .74-76.
4. Kimura A., Robyt J.F. Reaction of enzymes with starch granules. Kinetics and
products of the reaction with glucoamylase // Carbohydr. Res. – 1995. – 222. – 87104.
5.Celia M.L. Franco t all. Studies on the Susceptibility of Granular Cassava and
Corn Starches to Enzymatic Attack. Part I // Starch/Stärke. –1987. – 39. – R 12. –
432.
6. Whistler R.L. Microporous Granular Starch Matrix Compositions // U.S. Patent
4,985,082 (1991)
7. Smith J.S., Lineback D.R. Hydrolysis of Native Wheat and Corn Starch Granules
by Glucoamylase from Aspergillus niger and Rhizopus niveus // Die Stärke. –1976. –
38.– R 7. – 243.
8. Yun Wu, Xianfeng Du t all. Preparation of microporous starch by glucoamilase
and ultrasound // Starch/Stärke. – 2011. – 63. – 217-225.
9. Tetsuya Yamada t all. Components of the Porous Maize Starch Granule Prepared
by Amylase Treatment // Starch/Stärke.– 1995. – 46. – R 9. – 358-361.
10. Yao Wei Rong, Yao Hui Yuan. Adsorbent Characteristics of Porous Starch //
Starch/Stärke. – 2002. – 54. – 260-263.
159
=8 664.161.8:557.15.02
7
7 – j
8 =< k-8
!= ..*, ' 8.., #! .
., 0 ..
! ()) #" #$
, e-mail: [email protected]
*%, " ( <D <
< (T"). %<
TQ- T". < T".
AMYLOPECTIN STARCH – PERSPECTIVE RAW MATERIAL
FOR k-CYCLODEXTRIN PRODUCTION
Guluyk N.G.*, Komarov Y.I., Pikhalo D.M., Puchkova T.S.
All-Russian Research Institute for Starch Products
Russia, e-mail: [email protected]
*Corresponding person
Abstract
The results of researches to use corn amylopectin starch as raw material for
production of cyclodextrins (5D) are stated in the article. The effect of enzyme CGTase dosing and duration of process upon the yield of cyclodextrins was studied. Based
on carried out researches there was proposed technological flowchart of cyclodextrins
production.
T
(T") – H
, ? D
, G .
'
< D T", ? 6, 7 8 D
, < -, —-, ¦-T" [1]. !< <
T" < D <, <<, ?< . ?<, < < . Z
T"
H%% < .
160
( '
T" , H
< H%%
T" <
.
&
H< ?
D T" [2]. " T", , < < << %< [3].
" 7 T" 7
7
< . F
H
<D % <. < < < <
<
<, <D? , <
.
<
< < D
, < <
D? ?.
$%&" '" !
" T" < <
< <7
F5Q 51985 5
$
[4,5]. E <
<: ?
84,5 %; <
0 %; , % ?
:
< ? 0,1; 0,22; 0,2.
#
< T" %<
%
< <. $< %< <
«
<»,
"
(«Novozymes»):
-<
<
«#8-480 /»
(«BAN-480 L»), 480 /; TQ- < «Q
<»
(«Toruzyme»), 3000 / [6]. ( <
H F5Q 9976-94.
( < <: 30 %; -<
0,2 / ? <; < 85 ± 2 5;
< 115 ± 5 5 30 < . $
< D?< <: ; D D? ?
('() << <
< /-Z
< <
<
H%%
<
%
(
<
%
%
<< < %< Buschi Bischoff, <
8120) [7].
<
D?
:
<
((=5) 97,0 %; <
2,0 %; <
1,0 %; D
0,0 %.
161
!
D?: 5,0
± 0,2; < 51 ± 1 5, TQ- – 1, 3, 5, 10, 15 / <
? <.
" T" < H 5 % U<
<.
$
92 , <
<, <
< H%%
<
% T" <
.
()!" !
$
H< <
T" <
< %<
.1.
!,l#" 1 – $!#! "5!-"%! -5& «"-l5!» («Toruzyme»)
# %&*" 8
=< T" (45 %) D? TQ-, / ..: 15 – 30 ; 10 – 48 ; 5 – 68 .
$ 90 3 / .. TQ-
– 42 %, TQ- 1 / .. – 37 %.
" D %<
TQ- D <
< << «TableCurve3D v.4.0». ' <<
. 2.
162
90 80
70 60
50 0
4 0
3 0
2 0
1 0 0
,
2.5
5
7.5
10
12.
5
50
45
40
35
30
25
20
15
10
5
0
, %
, %
50
45
40
35
30
25
20
15
10
5
0
, /
'
2 – &<
T" <
< TQ-
(
T", , <
<
<?
< % H< (
) D:
—-T"
1.170 0.140 ˜ t 0.385 ˜ c 0.003 ˜ t 2 0.003 ˜ c 2 0.125 ˜ c ˜ t
,
1 0.094 ˜ t 0.003 ˜ t 2 8.757 ˜ ñ2 0.003 ˜ c ˜ t
t – ; – %<, / ..
<.
H%% R= 0,9915285.
$
T" %
< D? . . 3 %
% —-T", <
DMLM %< Leica.
< —-T" , . 4.
100 '
3 – —-T"
163
)-
!" *
#
+!l
-
$ &
'
&
# ":
$
*
# #
&"
+ ":
!"(
'
4 – Q
< T"
""
$< <
< T" <? D <
<. H
< , D? < <
, D? .
164
+%!-/0 3
1. Jozsef Szejtli. Cyclodextrin technology. – Kluwer, 1984.
2. 8 (.8. T
: <. – ), 2002. –
519 .
3. Jozsef Szejtli. Cyclodextrins and their inclusion complexes AKADEMIAI
KIADO. – Budapest, 1982.
4. D .., <
`.., $
".=., $
Q.5. < – H%%
D // Q XIX =
% <. – =
, '
, 18-20 2012.
5. D .., <
`.., $
".=., $
Q.5. —-
<
< // Q (
-
% «$? ». – 5$, 15-16 < 2013. – 5.
40-42.
6. = < «
<», 2008.
7. / ."., 8 (.(., / Q.(., E
/.5. Q
<
(<
).– =.: '
<, 2007. – 261 .
165
=8 665.14
, =<
; 7
(' .. *
" '"# #, !
e-mail: [email protected]
*
%, " <, , <
?
.
5
<
< , <
< <
. 5
<? < , <
-?
< < .
THE CHEMICAL COMPOSITION OF SOAPSTOCKS
FROM REFINING VEGETABLE OILS
Romanovska T.I.*
National University of Food Technologies, Ukraine
e-mail: [email protected]
*Corresponding person
Abstract
Investigated the soap stocks of sunflower oil which obtained continuous
soapstock separation and allocated in soap-alkaline medium.
Soapstocks diverse chemical composition, which is associated with the scheme
of processing and the quality of the feedstock. Combining hydration and
neutralization scheme continuous neutralization soapstock separation or continuous
neutralization soap-alkaline medium without good hydration leads to unnecessary
loss of neutral fat.
5?D? < %
< D
. H %
D %
%
[1, 3, 7]. (
<
D %
<
D %
%
<. Q
%
D <
<
. (
<
166
< D D D?< <?< <
.
< <: <
-?
.
<
H < D <D < <
<
.
$
%
< < < , [2, 4, 5].
T 7
<
, <
<<.
$%&" '" !
FU
< <
,
D?
< , (
<
<, D?
<
<
-?
. ( % <.
5
< <
< , H <, < , . 5
< < ?
.
5
, < <
< ?
.
5
< <
< 7 < 130 q5 [6]. 5
%
%
<<
<
< <
< <<
< < .
()!" !
$
< . F < 410 q5, D . $
< 5 <. '
1 2.
Q 1 -< , < $
5
?
, %
( < :
- (†), %
- (†), %
5
7 †:†
5
, %
5
R1
7,47±0,58
5
R2
6,87±0,58
5
R3
6,57±0,58
6,14±0,16
1,29±0,58
1 : 4,8
81,34±0,42
2,96±0,16
3,91±0,58
1 : 0,8
85,92±0,39
3,49±0,16
3,08±0,58
1 : 0,9
80,83±0,45
167
5
%
%
, '2F5, </100
263,4±43,5
Q 2 -< , < <
-?
$
5
?
, %
( < :
- (†), %
- (†), %
5
7 †:†
5
, %
5
%
%
, '2F5, </100
5
R1
40,24±0,58
5
R2
34,68±0,58
5
R3
45,95±0,58
22,45±0,16
17,79±0,58
1 : 1,3
47,60±0,32
20,20±0,16
14,48±0,58
1 : 1,4
53,56±0,45
29,15±0,16
16,80±58
1 : 1,7
43,35±0,62
82,6±20,1
75,4±20,1
58,9±20,1
5
, < <
, , < . ' < <?D D D, H
< %
%
. ' H<
< D H<
D .
Q
R1 < 7 <
< D? , 7D 1 : 1, 7 < .
5
, < <
?
(
< <
< <, <D 7 < < D? . " <
?
7 1 : 10. ( %
%
, -<
<, D <. Q < 7.
$
D 7 < % <. 5
<? <
, <
-?
< < .
"7 <
<D <
. Q 7
%
%
<
?
.
""
5
<
< , <
< <
. 5
<? < , 168
<
-?
< < .
+%!-/0 3
1. 8D .5., ).$. %
<: 5
,
, , <. =.: 8
<, 1986.
256 .
2. (
5.., 5<
._., '%
8.#. 5
7
/ 5 6: =
-
<7
.
=.: TQZ?
<, 1979. (. 8. 36 .
3. "
F.8., &
.(. F< < ?
D // =
<7
. 2005. R3. 5. 2729.
4. )D =.(., .(. ( <
<
< // ! <
. 2007. R3. 5. 1215.
5. 7 .8. < ?
%
< , D? // =
<7
. 2008. R2. 5. 1012.
6. Qii <
. 5
. 5F! 15.437207:2004.* i 20050701.
7. Q
: !. / 8D .5., ).$.,
_
/.., &
.., =
? ).(., 87 ).8., =< ./,,
8.`.; $
. .5. 8D. 3- . =.: $?
<,
1999. 451 .
169
=8 577.154.21:66.093.8.663.542
8 = 7= ;77
7 5#* .., ) .., ) (..
34&! (6& « " # "»,
e-mail: [email protected]
*
%, " F < < %<< < :
< 50-55 ºC, =4,5, < = 2,9 <
/. $
7 % < <
%<
%
D
<.
TOPINAMBUR INULIN HYDROLYSIS BY INVERTASE
Kozhukhova* M.A., Nazarenko M.N., Drozdov R.A.
Kuban State Technological University, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
The kinetic characteristics and optimal conditions were studied for the
hydrolysis of inulin with an enzyme preparation of invertase: temperature 50-55 º C,
pH = 4.5, Km = 2.9 mol / l. The data obtained allow to expand the scope of the drug
of invertase and reasonable approach to the selection mode of enzymatic hydrolysis
of inulin in the preparation of fructose-glucose syrup from Jerusalem artichoke.
$< < <. ‹
< <
%
%
D
%
-D
(5). F 7
<, D D, <,
?D . – , < «<
» , D, <
<. 5 7
< ?
%<
<7
. D , , , ,
<
, [1-3].
170
5?D 5, %< ?
H
, < , < < < .
" D H
- H
, ? —-
< < %
. <
D < ?. ( H< , <D [4].
—-%
%
(..3.2.1.26) ? D?
%
,
, . < <D , ? ,
7 . $
D .
( ? < <<
%<, 7 , 7 % < [4-7].
T – <
< %<
<
«#
-1»
$%&" '" !
( H , D?<
<: < <, ? ,
7
%<
, < <
< 2-4 << H
<
1:2 < 25 ºC.
" 7 H%%
< 23,4 <
5 << [8]. $
H %, % - <
. " %D, ?D <
(=) <
<
< 1,5". < %< «#
-1», Saccharomyces
cerevisiae, D? D 80000/. " 0,05 %. <D
D «Readles» (8), ,
< D (=). ? < <- «Laborota 20» (<).
<
?D <
. F H%%
%<
D?
, %< <
<
[9].
171
110
110
100
100
90
90
80
80
V, %
V, %
()!" !
F
< < H%%
%<
< , D <,
, 7 %< .
" < D? = (
0,7 <
/)
<
1 2.
70
70
60
60
50
50
40
0
20
40
60
80
40
100
1
t
'
1 – ( < (t)
(V) 2
3
4
5
6
7
8
'
2 – ( (V) , 7 4,5 < 50-55 ºC, D < ,
7 < [5,6].
!
, < %< <
<,
< MnSO4 [6].
5?
H%%
%<
. 3 4 <
= < . ", 3, D
< , %, 4, <
%<
:
=H (<) <<D (Vmax). F
,
< %
< , -1/ <, < 1/ Vmax [1].
172
0,35
10
y = 2,933x + 0,8023
8
0,25
6
0,2
1/V
V, / 0,3
0,15
4
0,1
2
0,05
0
-1
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
-0,5
0
0,5
1
1,5
2
2,5
3
-2
S, /
1/S
'
3 – &<
(V) (S) < () () .
F %< < < D? : < =2,9
<
/, Vmax =1,25 <
/ . !
D
D
%< .
""
( < < (
<
%) %<< < : < 50-55 ºC, =4,5,
< = 2,9 <
/. $
7 % <
#
-1 <
%<
%
-D
<.
'
< =
'
, 4.1897.2011
+%!-/0 3
1. Tomotani, E. J., & Vitolo, M. Production of high-fructose syrup using immobilized
invertase in a membrane reactor // Journal of Food Engineering ,2007, 80(2), 662667.
2. Lima, D. M., Fernandes, P., Nascimento, D. S., Figueiredo Ribeiro, R. C., & de
Assis, S. A. Fructose syrup: A biotechnology asset // Food Technology and
Biotechnology, 2011, 49(4), 424-434.
3. Upadhyay, L. S. B., & Verma, N. Highly efficient production of inverted syrup in
an analytical column with immobilized invertase // Journal of Food Science and
Technology, 2013, 1-6.
173
4. Dao, T. H., Zhang, J., & Bao, J. Characterization of inulin hydrolyzing enzyme(s)
in commercial glucoamylases and its application in lactic acid production from
jerusalem artichoke tubers (jat) // Bioresource Technology, 2013, 148, 157-162.
5. Olcer, Z., Ozmen, M. M., Sahin, Z. M., Yilmaz, F., & Tanriseven, A. Highly
efficient method towards in situ immobilization of invertase using cryogelation //
Applied Biochemistry and Biotechnology, 2013, 171(8), 2142-2152.
6. Karka¨, T., & Önal, S. Characteristics of invertase partitioned in poly(ethylene
glycol)/magnesium sulfate aqueous two-phase system // Biochemical Engineering
Journal, 60, 142-150.
7. Giraldo, M. A., da Silva, T. M., Salvato, F., Terenzi, H. F., Jorge, J. A., &
Guimarães, L. H. S. Thermostable invertases from paecylomyces variotii produced
under submerged and solid-state fermentation using agroindustrial residues // World
Journal of Microbiology and Biotechnology, 2012, 28(2), 463-472.
8. =.., #
Q.(., =.8. . %
H
< <<
// $
< H
8! [Z
]. – : 8!, 2013. –
R10(094).
–
IDA
[article
ID]:0941310018.
–
'<
:
http://ej.kubagro.ru/2013/10/pdf/18.pdf,0,625 ...
9. )<
8.., 8<
(.(., _
7 .$. =
<
/ $
. '.8.. )<
. – /.: 8
<, 1987. –
430.
174
=8 664.8.002.3
8 ;< ;=
8 8 `8
"0 .., ! .. *, 80 .., 4 ..
! -" # #$" #$, e-mail: [email protected]
*%, " $
,
D?
%
%
,
?
<
< : , , <
-
, <
-
, , <. $
, D < < C, P- ? <
H< ; – <
<
H<
– , <; < <
H< – ; < < C P- ?; < < , <
H<- <
H<- .
THE STUDY PHYSIOLOGICALLY FUNCTIONAL INGREDIENTS OF
NON-TRADITIONAL RAW MATERIALS OF PLANT ORIGIN
Lychkina L.V., Korastileva N.N. *, Yurchenko N.V., Chernenko A.V.
Krasnodar Research Institute of Agricultural Products Storage and Processing of
Russian Agricultural Academy, Russia, e-mail: [email protected]
* Corresponding person
1
Abstract
The data that characterize the structure of physiologically functional
ingredients contained in nonconventional plant raw material of Krasnodar region:
leaves of walnut, black walnut leaves, walnuts in dairy wax degree of ripeness,
walnut black milk wax degree of ripeness, dandelion, portulak garden and stinging
nettle. It is shown that the grapes and leaves of walnut and black walnut are sources
of vitamin C, P-active substances and trace element iodine; leaves black and walnut sources of macro-elements - potassium, calcium and magnesium; dandelion is a
source of carotenoids, and trace elements such as iron; portulak vegetable source of
vitamin C and P-active substances; stinging nettle is a source of carotenoids, macro
elements - calcium and trace elements such as iron.
175
'
< D 7<
- < 5, , P-
?, , < ? ? ,
7D? ? % < [1].
F
D <
, ?
< %
%
.
$< 7D < .
$%&" '" !
FU< D? -
: (Juglans regia L) (Juglans nigra L) <
, , <.
F F$E <. Q< ! /
, - D <, , - 5$
«
».
?
%
<< <
%
<
.
()!" !
, <
<
, < ?, P- ?, ? ? , < < %
.
! H
, D < ( 1 2).
Q 1 – 5
<
<
<
<
5 ?, %
F <
-
/ F <
-
F
,
%
5
?
$
?
$?
0,4-0,54
3,65-3,80
1,05-1,17
3,3-4,2
<
6,5-6,9
<
-
-
40,2- 41,8
0,2-0,3
1,7-2,1
0,8-0,9
25,0-30,8
7,0-8,0
-
0,3-0,35
1,9-4,2
1,27-1,4
3,7-4,9
176
/ F
$
<
-
40,0- 42,4
0,34-0,40
1,9-2,1
0,6-0,82
23,0-27,0
4,8-6,2
-
0,23-0,5
2,71-2,96
3,02-3,24
1,5-1,7
4,2-4,7
-
0,15-0,20
3,6-4,2
0,15-0,17
0,8-1,1
9,8-10,2
-
0,18-0,22
4,0-4,6
0,09-0,12
6,9- 7,2
Q 2 - 5
<
<
F <
-
/ F <
-
/ F
$
<
(<, < %
= ?, < %
5
- '-Ca
P
Mg
Fe
I
?
904,61,6
1680
100,2- 87,5- 121,6- 1,54- 1,201496
1,9
120,2 112,5 129,2
1,85 1,65
788,6
805,7
732,2
918,0
11,7
12,3
0,5
19293450
15601640
1177,4
9,5
1170,4
0,5
62,6
14,5
31,6
0,2
2,13,7
0,70
476,0
680,0
42,2
48,4
7,8
8,3
3,64,9
4010440
220-390
1027,1
4,2
221,9
0,6
2,43
40,957,4
31,040,1
28,030
8,69,4
0,01
240
290
108
200
1,8-2,4
14302048
13001500
67,470,1
481 514
49,353,7
73,784,4
33,741,8
47,649,3
0,3
0,01
11,0-13,0
20,4- 0,91
21,8
", 1 2 <
D %
<
< .
$
< < D <
, ? < ?. 7 < 5 <
467,0 1496 </100. (
– 1200-1650 </100, – 2120 -3720 < /100; – 700-1000 < /100, – 2430- 2706 </100
(
– 100-150 <) ? . / < -1170-1300 </100, 221,9 </100 (
- 300-500 </100).
– 20,4- 21,8 </100, D <
, – 481 </100.
177
$
< 5 -240-290 </100, ' – ? 1430- 2048 </100.
5
– 3,6-4,9 </100,
< 5- 42,2-48,4 </100, – 8,6- 9,4 </100.
<
, <
<
<
:
?,
, <
, ? << ?<.
!< ! E$ .
•
? - < «F7», <
, -
, «
<».
8
- «$
», .
(<
- < , , <
, «(
» ß-
< <.
? - ? , < .
""
F %
%
(
<
-
,
, , <) , < <
, ? , < ?, , < <
, < C, P ?, , <
H< (, , <) <
H< (
), <
.
+%!-/0 3
1. ` 5.#. Q
%
. !
, =
"/ , 2008. - 280 .
178
=8 664.123:641.1/.3
8 ;= 8
8 «
»
.., 3 ..*
! -" # #$" , ,
e-mail: [email protected]
*
%, " $ , D? ? < #8"
«#
», <. 5
<, #8"
«#
» < ? , <
<? % ? '.
STUDY OF BAA «BIOPEKT» FUNCTIONAL INGREDIENTS CONTENT
Lukyanenko M. V., Kupin G. A.*
SSI Krasnodar Research Institute of Agricultural Products Storage and Processing,
Russia, e-mail: [email protected]
*Corresponding person
Abstract
Characteristic data of beet presscake origin BAA «Biopekt» chemical content
have been represented. According to data, BAA «Biopekt» is recommended to use as
a source of food fibers at production of healthy nutrition products and also as
independent products for compensation of food fibers deficiency in diet of RF
population.
F
? %
D
? , D? – <
,
D
, <D
, ?, < [1].
$? ?
(, , <
), , ,
, D <, <,
<, << < <.
Q ? G D? <D UG< 7, <
H
D %D. < H
, < ? –
179
<
%
[2].
F
< ? G,
< G 70 - 75% G D
?
.
!G< ! E$ ? (#8" «#
») <,
<D? «
-».
!, #8" , G %
.
$%&" '" !
FU< #8" «#
», <, F8F «» .
Z<
<<
<
.
()!" !
< H ? < #8"
«#
».
' 1.
Q 1 - F? < #8" «#
»
<
& =
, %:
10,0
7,0
77,8
< ?
5,2
F
D #8" «#
», < (
77 %),
H
, .
( 2 , ? #8" «#
».
Q 2 – 5
#8" «#
»
<
5
, % ?< D
!
, < :
100,0
?, <
:
33,0
7,7
25,3
D
33,2
<D
33,8
180
2 , #8" «#
»
? << <
? D
, <D
. 5 < ? (
33 % ? <<
).
5D?< H
< 7 <
- <
H<
#8" «#
».
' 3.
Q 3- 5
<
- <
H<
#8" «#
» <
<
H<
5
H<
=
H<, </100 :
363,6
327,1
<
447,1
%
%
67,0
=
H<, </100 :
4200
7700
<
1400
<
8000
3 , < #8"
«#
» <
H<< <, , , %
%
<, <
H<< - , , <, <.
""
$
D %
#8" ? «#
» D D? :
1. #8" «#
» ? , D?
<,
<,
<,
<< D?< <, < <
- <
H<
D? <<
<, < 7
< <
;
2. (
#8" «#
» ? (
33% < ) G H
, 7
%
;
3. 5
<
- <
H<
7< D.
181
+%!-/0 3
1. /
, (.8. G / (.8. /
, A.A.
)%<
, H.A. =
, /.. $ // 5, - 2009. - R 3. - 5. 28-30.
2. /
, (.8. $? , ? <
<
< / (.8. /
, /.. $, H.A. =
, 5.=. ‹
//
E – 2008, - R 5. - 5. 34-36.
182
=8 664.8 /641.1/3
7- 7 =
87 7 = 7=
9 .., 3 ..*
! -" # #$" , e-mail: [email protected]
*
%, " $ D <
<
<
< < <
- <
< .
F
<
- <
<
< <, ?D <
7
, : %
D
, %
, ? , <
PECULIARITIES OF JERUSALEM ARTICHOKE OVERGROUND
BIOMASS AND TUBER MACRO AND MICRONUTRIENTS CONTENT
Fat’kina E. V., Kupin G. A.*
SSI Krasnodar Research Institute of Agricultural Products Storage and Processing
-mail: [email protected]
*Corresponding person
Abstract
Comparative data for Jerusalem artichoke overground and tuber biomass
macro- and micronutrients content in cycle of plant growth have been represented.
High content of macro- and micronutrients in Jerusalem artichoke overground
biomass has been determined, that provides the food value and make possible the
further obtaining of such a products as fructose-glucose syrup, fructose, food fibers,
forage additives.
$
< ? D? 7, <
. ( H H
7 < < , DD?
D . F< < - , D?
7< <
< <
[1].
183
(D ?
, <
<: < (, , ? ) %
, D
-%
, , %
, <
< < <
(<, H
) [2].
! H
, < D
<
- <
<
< < .
$%&" '" !
FU< < < < «», < 8, ?
! E$ «Z `» (
, . 5
<) .
5
<
- <
<
< < < <
<.
()!" !
<D < < «» %
% (, ). $
< 7 <, < < < < 200 <<.
( 1 <
<
< <.
184
Q 1 – 5
<
<
< <
& <
< <
% 5 #
$
(
)
=
25,60
21,20
20,90
23,50
?, %, < :
2,80
1,79
1,98
2,40
2,35
2,64
2,54
2,07
, <
20,45
16,52
15,98
18,57
:
<
?
<D
D
10,01
6,26
0,10
6,87
9,87
6,29
0,78
3,42
4,36
0,87
4,13
4,72
0,95
4,05
4,55
1,21
1,11
1,97
1 , <
< < . =<
<
<, (59 %), <<
- (51 %). !
, < 50
% <
<. ( (
, .. % ) <
<< (42 % ? <
?). 5 < <
< <
, <D , .
Q< <, <
< < <
< <
. Q, <, <
< <
, %
D
H
< <
<
, < < <
< <
, D <<
, :
?, , <D
, D <
< <
.
( <
< < (
38 % < ?). $
D <
< < < <, % . ( <
< < <
185
%
% ? (
?, <D
D
) < 2 7,
< .
5D?< H
< 7 <
- <
H<
, ? <
< <.
' 2.
Q 2 –5
<
- <
H<
<
< <
5
<
H<
<
H<
< <
% (
)
5 #
T
=
<
H<
</100:
1920,0
1410,0
1120,0
1240,0
880,0
960,0
940,0
860,0
355,0
340,0
330,0
310,0
%
%
=
<
H<
</100:
1,90
3,69
4,00
6,40
<
8,37
6,80
11,50
7,20
14,00
25,88
44,00
40,00
<
0,18
0,15
0,14
0,17
<
0,29
0,28
0,30
0,41
2 , <, <
< < , < 2 7, <
<, 3 7 D <. $ <
<
H<
<
< < , 7 < 1,6-1,8 , < % , % 7 1,6-1,7 , < – 1,1-1,7
D < < <.
""
$
D <
- <
<
< %
% (,
) <.
( < <
< <
<
< <
- <
186
?
<7
.
( <
- <
, < < < < < < D ? , %
-D
, %
, ?
, <
.
+%!-/0 3
1.Q
<: , ?, <
H
<,
(, , ) : <
% / '.. ‹
,
'.8. 7, '.. ), ).$. , (.. 7; ! , .. - .-. ; . '.. ‹
. : "
< - `, 2013.-184 .
2. ‹
'.., (.(., .8., ) '.. 5
? < / '.. ‹
, (.(. ,
.8. , '.. ) // ( '85E, 2009. – R 6. – 5.79-82.
187
=8 636.087.8
8 9;; < 7
8 «+» 8 8 =c ) (..1*, ..1, ! ..2, 6!% .8.2
1
! -" # #$" #$"# , ,
e-mail:[email protected]
2
6" -" $"" #$"# , email:[email protected]
*
%, " ( ! E$ <
«Q+», ? < <
. (
, FFF 5$
«"
» (
< 7
-%
<
<
«Q+» <<
H%%
<
7 ?
.
DETERMINING THE EFFECTIVE AMOUNT FEED ADDITIVES
"TETRA +" FOR INTRODUCTION TO THE DIET OF LACTATING COWS
Kazaryan, R.V.1*, Gordievskaya, A.A.1, Mosolova N.N.2, Zlobina E.U.2
1
Krasnodar Research Institute of Agricultural Products Storage and Processing of
Russian Agricultural Academy, Russia, e-mail:[email protected]
2
Volga Research Institute of production and refining meat and dairy products of the
Russian Agricultural Academy, Russia
*Corresponding person
Abstract
In the GNU KNIIHP the developed technology and formula feed additives
"Tetra+", contains a complex of biologically active components. As a result of
industrial experiments conducted on the basis of JV "don" Kalachevskyi region of the
Volgograd region in the three experimental groups of cows of Holstein-Friesian breed
was identified optimal dose to achieve maximum production efficiency of milk and
improve its nutritional value.
188
( <
< <
<, <<, <
- <
H<< % . $
<
-
%
? <
? [1,2].
( ! E$ <
«Q+», ? < <
: , %-
%
, < 5, <
H< %
%
[3].
Q 7 < D
% <
, % H%% [4-7].
Z%%
<
< FFF 5$ «"
» (
.
$%&" '" !
'
D? -
7
-%
. 5 H
D %
<
4 20 . $
? < , <, , < <. < () , I, II III <
D «Q+»
< < < 40, 60 80 1 <
.
()!" !
$
< , < ,
<
D . $
<
F5Q 26809-86. $
<
< D? <
.
& 90 ?
<
, 1-5.
( D (
1), H
< <
<
<
. '
D % < , D <
<
, 2 3.
189
=
, 2250
2202,38
2200
2150
2135,44
2110,15
2100
2050
2029,5
2000
1950
1900
1
2
3
'
1- ( <
«Q+» <
D
<: – ; 1 - I ;
2 - II ; 3 - III D , 1-3, , <
7D <
<
< . /7
III , < 7
. 5 <, <
<
H<
, %
%
( 4-5) III D H< < II .
Z
H< <
H<<. " 7
?
<
< < < < <
H<
.
190
3,78
3,76
=
, %
3,76
3,74
3,72
3,72
3,71
3,7
3,68
3,66
3,65
3,64
3,62
3,6
3,58
1
2
3
'
2 – ( <
«Q+» <
D
D <
D? : – ;
1 - I ; 2 - II ; 3 - III 3,45
=
,%
3,42
3,4
3,35
3,35
3,3
3,28
3,25
3,24
3,2
3,15
1
2
3
'
3 - ( <
«Q+» <
D D
<
D? : – ;
1 - I ; 2 - II ; 3 - III 191
=
, %
32,6
32,54
32,47
32,4
32,2
32,15
32
31,8
31,79
31,6
31,4
1
2
3
'
4 - ( <
«Q+» <
D? : – ; 1 - I ;
2 - II ; 3 - III =
%
%
, %
26
25,8
25,86
25,91
25,6
25,4
25,38
25,2
25
25,12
24,8
24,6
1
2
3
'
5 – ( <
«Q+» <
D
D %
%
<
D? : – ;
1 - I ; 2 - II ; 3 - III ""
!
, <
<
H%%
< <
«Q+» 80 1 <, D< %
%
.
192
+%!-/0 3
1. 8 (.8., $
).8., E /.". . 5
D
< . – =., 1982.
2. ‹
'.., '.(., (.8. . 8 <
// † «E ». –
=
: -
«$? <7
», 2012. - R3.
3. $. 2496329 '
, =$ 823 1/16. $< % <
/ '.(.; .
.-. - . - R 2012107719/13 ;
.29.02.12. – 3 .
4. "
? H
/ (.).
!
, (.. (, '.(. . // <
% «
? : %< ». 24-25 < 2012 . – : -
FFF
« "
<-`», 2012. – 5. 14-19.
5. $
7 H
<
H%%
<
< <
< / /.(.$
?, '.(.,
8..Q
. // (
%: . . –
(
, 2005.
6. 7 '5 7
<
/ '.(. , (.8. , (.). !
. //
III =
- % «
? : %< ». 23-24 < 2013 . –
: -
FFF « "
<-`», 2013. – 5. 186-190.
7. , '.(. 5
< 7 7 / '.(. , (.8. //
= =
-
%. –
(
, 2013. – 5.46-49.
193
8 4.
8 78 < 8=
194
=8 664
8 < ! . *., 8 $..
X " . .(. 6#", ,
e-mail: [email protected]
* %, " <
< < %
<< <
%
< % .
'
<
«» . 5
<<
?
<
< < . Z <D D D
< «». $ «
» D D D <D , <
?D Z<
(<
/<
<).
DETERMINATION OF NUTS’ BIOTOXICITY DURING THE STORAGE
PERIOD
Eliseeva L.G.*, Yurina O.V.
Plekhanov Russian University of Economics, Russia,
e-mail: [email protected]
* Corresponding person
Abstract
In article studied the correlation dependences between the appearance of
defects of sensory indicators and change of microbiological and physicochemical
quality indicators of hazelnuts and peanuts during storage period. It is recommended
to use the indicator of «smell» as the primary indicator of the beginning of oxidative
processes in fats. The speed of decrease of the total content of antioxidants in nuts
and oxygen uptake rates can serve as reliable criteria for evaluation of the level of
nuts’ shelf life. These indicators are stable correlation with the index «smell». When
expressed signs of «rancidity» the smell and taste of nuts become weak carcinogenic
and mutagenic toxicity, which is determined by the biotest Ames
(salmonella/microsomes).
195
$
< 7 <
<
, '
< < , 7. , =
, 7D D <D %7 - 31,4 % 28,7 %
; % < - 11,7 % 11,4 %, 7D - 7,8 % 5,4 %, 7D - 1,5 % 1,2 %. "
D << D < 1 %. [1]
(
U < ? , D «H» - D D. Q, < 76 %
, 35 % 8,5 % . ( %
7 D - 91 %. [2] !
D D < . F D ?D, D <
D .
< %
, <
. =
. [3, 4] ( < <
7 . F
7
, <D? %
< <,
41,1 % . #
70 % ,
<D? %, <, %
< <
<. ( H
<
< D ,
D? D [5, 6].
< , D? % <
.
$%&" '" !
F
<
?D
<
%
. 5 < H%% <
< .
=
F5Q 10444.15-94 F5Q 10444.12-88.
F <<
<
<< <
<. 8<
< <
<
H
,
D?
H
<
< <
? < ? H
< $F «E<
<» <
<< <.
196
" Z<, 7<<
<
(<
/<
<) [7].
FU< % , %
, <
D %
, %< , %
, < <
, D?< 6 <.
()!" !
< <
< <
%
<< <
%
-< % .
< 35 °5, < < – 20 °5. #
, 1,5 – 2 7, < %, <
. ( H
<
< D , U.
( 28 D 7
< . " 5 %< , < < , 7D?< 10-15 %
, <D? %
. (
5 < (. 1).
5 <, , < , < 7
< . #
<
<
«
» < 7 , 7< . (
? <
< 7
< 2,5 .
8 , <
, , , < , D D
. $
(
) D D , D
, < . H 7 . $
«» <
< < .
197
Q 1 – < $
<
3505, 0 (
)
7
14
21
28
F < H%%
<
,
T
(7
(
&
<
30,0
30,0
23,5
15,0
29,3
29,0
23,0
15,0
15,5
5,0
20,0
12,5
7,6
0
18,5
11,3
5.0
0
15,5
10,5
<
,
98,5
96,3
53,0
37.4
31.0
(7
(7
" %%
, D? <
< < <
% H
%
-H
<
<
,
#$ (. 2). 5?
=88=, , H
U <, < 7 %
7075 %. ( < H%
<
%
<
. (
, < <
U
.
Q 2 – =
$
< 35 º5,
=88=, F)/
,
F)/
#$
0,01 0 (
)
7
14
21
28
2,5*103
3,2*103
2,8*103
3,0*103
3,3*103
5,0*101
10,0*101
8,0*101
15,0*101
10,0*101
F , D? , <<
? <
% .
198
, 35
30
25
20
15
10
5
0
0
7
14
21
28
, &""
<
<
'
1 – < ?
< "< ?
% ?
. <<
< D , <, ,
U . < H < < , ,
< < 7 <<
.
$
H
<
<
<,
D?< , <
<
<<
. ( 7< – H
<
< 7 14 <
.
(
< < %
-<< <, D?< << , , D? < <
<
%
. < <
% <
U< ? <
% . ( <
? < ?
D?
: , .
" <
<
< «
» < < ?
Z< (<
/<
<). $
199
D? . ) 7 < <
U 7 7 < 1,7 ,
D, < .
) D 7 1,7-10 , , 10-100
- , < 100 - <
. ( 7 D % 7 his+ - <
, 7 <
D < 35 15 , <
H%%.
""
x 8 <
«» .
x 5
<<
? <
< < , H <D D
D <
< «».
x $ «
» D D D <D , <
?D
?
Z<
(<
/<
<).
+%!-/0 3
1. =
(.8., Q<
%
Q.., 5.. . F
<
< % // $? . –
2007. – R 2.
2. 8. '
'
// Russian Food&Drinks Market Magazine. – 2012. – R 5. – . 25.
3. ) /.., 87 F.., ` F.(. 5 %<-
// Q
, 2012. - R 12.
4. ) /.., 8.., 87 F.. 8 <
// Q
, 2012. - R
04.
5. ) /.., ` F.(. 5 , ? / Q
, 2013. - R 11.
6. (
(.8., .). F
// (7
, 2001 - R 1.
7. 5.(., 5
5./., #< 8.=. Z
-
<<.- =. =!, 1986 – . 103.
200
=8 665.372:543.422.25
9;; 7 78 87 8 < `
88` 7
..1, ..1*, .
.2, -/ $..2
1
! -" # #$" #$"# , , -mail: [email protected]
2
! ( -" # (.0. 6" #$"# *%, " ( <
<
< <, %
< < , <
-<
. $
H%%
< <
-<
% ? <.
EFFECTIVENESS OF NUCLEAR MAGNETIC RELAXATION QUALITY
ASSESSMENT OF COMPLEX SYSTEMS LIPID
Lisovaya E.V.1 , Viktorova E.P.1*, Prudnikov S.M.2 , Agafonov O.S.2
1
Krasnodar Research Institute of Agricultural Production Storage and Processing of
Russian Agricultural Academy, Russia, -mail: [email protected]
2
Research Institute of il Crops by V.S. Pustovoyt of Russian Agricultural Academy,
Russia,
* Corresponding person
bstract
This article describes methods for determining the oil content and moisture
content of oil seeds , methods for evaluating the quality and identification of oilseeds
and their products , based on the method of nuclear magnetic relaxation. The
efficiency of the method of nuclear magnetic relaxation for quality evaluation and
identification of complex lipid-containing systems.
201
F
? < <7
<
'
< <
<7
.
$ , D? < < ,
<
?
, <
, < [1].
$? , < << < , <, .
$< < %
-< <
% D %%D ?
, < , ?D
H .
5 ?D? %
-< <
% H%%< < D <
-<
, D? < % , U
<
U
.
( < < <
_=' 7
[2].
Z< < <
<
_='
, D 7<
D
.
%
< H< <
< < .
<
% -
? < _=' (
<).
F
, ? < <
%, < <
_='.
<<< <
< H
< <
< H [2].
[2], < <
D < . Q<
<, _=' <
? .
( $
5.=. [3] H<
<
< <
<
% < <
.
'
H <
<
< < 202
<
-< (
< -
< < <. (.5. $
(. ) <
?? <
< < < <.
( <
-< < <
< <
<
< <; <
<
< <
D
< ; <
<
-< < 10 40 05; %
7
<
<
[3].
$
_='-
<
< <
< ,
7 < < <
< < <
.
% < , ,
, <, < <
?D H-
% -<
<
<
< <
< < .
(
H
<
%% <
, D.
5 <, D
H
, D D 7 < <, D < < .
< , % <
, , < , .
$%&" '" !
5 D %
<
D < < <
<, < < , _='- (Q8) < < <
<
-$-=<- <
< _='
8=(-1006=, 7
. Z
, <
, «<
»
203
<, <
D _=' <, 10 <
. ( 7
<
_=' Q8 %, < <7 (10÷30
<
), D < < _=' Q8 % (<).
()!" !
( <
-
Q8 < % (Q2Q), <
Q8 H < %.
<
< _=' % < < <
, < < -
< % % [4].
'
<
? H<, < <, <
, < << <
<
-<
.
( < < D , H
%
%
(
), < (#8") < , D?
<
< <
%< .
$<< ? < <
%
%
%
%
() [5] < : , <
< .
( , %
%
<
<
D <, ?D <
, <
-<<
<
<,
<
,
<< _=' (81 82) <,
?
%
%
< () %
%
(83 84), ? %
%
< () [6].
!
, < 23 05 < <
< <<
< _=' <
<, ?
, <
<
<
.
204
< , , < 23 05 < <
%
%
<<
< _=' %
%
<
<
<
<
.
""
<
, D?
H
D, D? D D <
< [6].
Q< <, <
-<
<
< ? , < , <
, <
<
, H%% <
% ?
.
+%!-/0 3
1. Q
($
<) / /.8.
=, ).$. , ).(. =
?, 5.. =%; ? .
).$. – 5$.: F'", 2009. – 352 .
2. * (.. _ < / (.. * – /.: /!,
1991 . – 256 .
3. $
5.=. -
% < < <
<
: 8
% . ... -
. / $
5 =
. - , 2003. - 54.
4. /
).(. '
%
< <
-<
: 8
%
. ... . . / /
) (. - , 2009. 24.
5. /
< /
.5.
8D, /.. _
, ).8. 87 . 2- ., . . –
=.:8
<, 1991. – 5.33-35.
6. 8%
F.5. '
H-
/ F.5. 8%
, ).(. /
, ).8.
#, ).F. <
, ).$. // . – 2010 . – (.3.
– 5.11-13
205
=8 664.642.2
78< 88 Jc
9;; 8` 8= 8
' $..1*, ..2
1
34&! (6& «" " – -$"" », , e-mail: [email protected]
2
! -" # #$" , * %, " ##")!
( 7 H%%
<<< <, < D . ( H<, <
7 H%%
<< < .
'
<
7D H%%
,
DD? ?
D? <7
, D D , D? <
%.
METHODOLOGICAL APPROACHES TO INCREASE
THE EFFECTIVENESS OF PROMOTION OF HEALTHY PRODUCTS
POWER ON THE CONSUMER MARKET
Evdokimova O.V.1*, Kornen N.N.2
1
Federal state educational institution of higher professional education "State
University - educational-scientific-industrial complex", Russia
e-mail: [email protected]
2
State research institution Krasnodar Research Institute of storage and
processing of agricultural products, Russia
* Corresponding person
Abstract
In increasing the effectiveness of promotion of healthy food products important
is communication with the consumer, thus accelerating their implementation in the
diet of some categories of the population. In this regard, the proposed model of
efficiency of communication with the consumer in breeding of healthy food to the
consumer market.
206
Methodological approaches to the efficiency of promotion of healthy food to
the consumer market, including two areas of activity of the enterprises of food and
processing industry and trade, which are part of the concept of innovative approaches
covering towarowego-technological and marketing sphere.
(
< <
?
, < D? ? : ?,
%
.
F
, ? < ?D <, < ,
< < <
.
! H
, < <
7D H%%
.
$%&" '" !
(D <. $
< <
<: ?? (
,
) D <
, <D?
, 7< ,
, , D? H<
. '
< %
<
7 <.
( <
%
<
?? < <. $ - , < . $ H
< <, %
< < <
. "
<
, %
< <. (
< ?
7 <.
$ < << <, <
<< ?< < < D [1, 2].
()!" !
< <
7 H%%
<< < . =
< H<
, D? <
7 <.
207
$ <
<
< < (
1).
(
<
$
<
- %
<
$
<
- %
<
= %
<
D $
< !
%
< %
<
< Z<
%
< %
$ '
1 – = <
! %
<
. Z
< <
< ,
< <. < , <
7 (
, 7 , %
< ).
(
<
, , D <
.
< D U U %
(
2).
FU %
, , D
. <, < 7 %
D <, ? – D , D?
D -7
.
208
( U U %
FU %
5U %
5
5< (
7 < D)
!
5 (
)
(
( , )
8
(
< )
5
<
"
<
(
D )
'
2 – , D? <
<
< <
, < , H
<.
5
, %
<
< %
< .
!
– H
U %
. (
< <
7 , 7 . $ %
<
D < .
(D D U %
, < .
$
D . Q,
< <, D? 7<
H<
< <, <
D 7 .
#
7
<, , < D , , D D
? .
209
F ?
7 < .
< < , , D < .
Q D < 7D H%%
<
< (
3).
= 7D H%%
<
<
$ U %
$ U %
F < <? (<
<,
H<
8<
%
<
$
< 5
7 <
<
( < ! "<
<
7 ! ! '
3 – , 7D? H%%
<
<
5 < %
< H%%
, , H
< 7
<, < < .
" 7 H%%
<
< <
U U %
.
< < ($&$) (
4).
210
8 D
$&$ 5U, $&$
$? D?
<7
(
<
%
<
F
H
<
F
'
F
<
F
<
F
<
<
Q
H
( H $&$
<
H
<
$
7 H%%
$&$ < << <
FU %
$&$ <
5U %
$&$ <
( %
<
$&$
(
$&$
'
4 - 5< %
<
211
""
=
7D H%%
DD ?
D?
<7
.
$
, <D <
%
. $ H
<
<
< ,
< , , ,
. "
<
<< <
, < <
< .
(
– H%%
. F
D %
< <? . $ H
< %
< <
, << . (< <, <
< 7 , .
%
<
<
, D? -
% , DD?
?
D?
<7
, , H
, <<
D <
<
<.
+%!-/0 3
1. $
F.8. : < / F.8. $
// ZF, 2007. – 5. 173-186.
2. _
`.(. 5 -
/ `.(. _
//
Z
<, 2002. – R5. – 5. 3-20.
212
=8 664.642.2
8 < 8`` J - =8
< =< 8
- ..1, +"0 ..2*
1
34&! «
" " "
'"# $""», 2
! &0)) # /
#$, ,
e-mail: [email protected]
* %, " 5 ? Saccharomyces
cerevisiae S. minor 7 Penicillium roqueforti P.
funiculosum. ( <
< 7<< , 7
7
.
STUDY ANTAGONISTIC PROPERTIES OF YEAST IN RESPECT OF
FUNGI PENICILLIUM ROQUEFORTI, PENICILLIUM FUNICULOSUM AGENTS OF BREAD MOLDING
Sagui A.V.1, Bykovchenko T.V.2*
1
Moscow State University Food Production (MGUPP), Russia
2
State Scientific Research Institute Baking Industry (GOSNIIHP), Russia,
e-mail: [email protected]
*Corresponding person
Abstract
The article is devoted to high antagonistic activity of yeast Saccharomyces
cerevisiae and S. minor in respect of Penicillium roqueforti and P. funiculosum. In
the article the results of research of influence of inactivated culture of yeast on the
growth of fungi and quality and microbiological food safety on sourdough bakery,
using the power of yeast best antagonistic properties.
&
7 < < , %
, , < <
, <
[1, 2, 3, 4].
213
" F5E$
<
, ? U <
<
D <
<
<< E855$. 5< D D
< <
D , < <
(
, ) [1].
" %
-
<
D 7<< <
< < < <.
( H<, F5E$ D 7<<
Saccharomyces
cerevisiae 7 Penicillium roqueforti P. funiculosum.
$%&" '" !
FU< S. cerevisiae 7<<
30, 69,
M-23, -&, 512 S. minor 7<< *
7<<
<
<
F5E$.
" S. cerevisiae < <
%
<
<
<
[5]. ( - P. roqueforti P. funiculosum F5E$.
=
<
. =
D
D < < < <
< <
< 7<<
, <
< .
" <
7<<
-
D 8
#. < 30 5 ? < 90
5 10 <, < . $ < 24 5 <
-7<< 3,0 · 105 ./<. <
< 24
5 10 .,
<
< . " . 5- < < [6, 7].
" 7<< <
< <
D 214
7D <
. ( < D 7
< .
E
< <
< <
D <
< %
, < F5E$ [1, 8].
()!" !
' .
Q – ( 7<<
'
<
‹<< D <, %
P. funiculosum
P. roqueforti
S. cerevisiae 30
40
60
S. cerevisiae M-23
60
60
S. cerevisiae 69
60
60
S. cerevisiae -3
60
60
S. cerevisiae 512
60
100
S. minor *
100
80
100
100
" H<
, 7
7 P. funiculosum
7<< S. cerevisiae 30 ( 60%
D <), 7<<
=-23, 69, -3, 512 (
40%). ‹<< S. minor *
-7<< P. funiculosum.
$
7D < P. roqueforti D
%
7<< 30, =-23, 69, -3 (
40%). ! 7<< S. minor *
-7<< P. roqueforti.
Q< <, 7 7<<
S. cerevisiae 7<< S. minor.
" 7<< S. cerevisiae 30 <
7D G <. !
, < < < (
U< ) <
D , 7 %
D D < (
–
).
215
Q< <, , 7<<
S. cerevisiae 30 7
7
7 .
""
8
7 P.
funiculosum P. roqueforti 7<<
S.
cerevisiae 7<< S. minor, <
, <, . ! 7<<
S. cerevisiae
% , <
U < < . 7D
7 7<< S.
cerevisiae 30.
E < 7<< S. cerevisiae 30
7< 7 %
D D <.
Q< <, <
7<<
%< < 7 7 7 .
+%!-/0 3
1.
=
D . - F5E$. – =
. –
2013 . – 18 .
2.
#
Q. ., $
'. "., $
5. $., 8 8. 8. 5
? // E
'
. – 1999. - R 3. - .
16-17.
3.
=7 ".(. '
<
. 8
% . . , 5$!$Q, 2006. - 16 .
4. " ". =. 5
< ? <
/ ". =. ", =. ".
/G, ". 8. ; . 7-
. . – =. : #F=. /
, 2011. – 886 .: - (/7 ).
5.
, 8.. 5 <
<
[Q] / 8..
, _.'. , .. 5
// « 8
». - R 3-1(75). - 2012 . - 5. 41-44.
6.
/. (., . ). =
,
<
: !. . – 5$.:
5$!$Q, 2001. – 81 .
7. $
, '.". =
[Q] / '.". $
, Q..
#
. - =.: F5E$. – 2001. - 54 .
216
=8 664.642.2
=< < 7<
J PENICILLIUM
ROQUEFORTI, PENICILLIUM FUNICULOSUM
+'% .1, +"0 ..2*,
1
34&! «
" " "
'"# $""», 2
! &0)) # /
#$,
e-mail: [email protected]
*%, " ( <
7 Penicillium roqueforti P. funiculosum < <
%
<
<
<
<
7<<-
<
,
<D? . ( 7<< L. acidophilis -146,
7 7D %D , < 7<< .
STUDY ANTAGONISTIC PROPERTIES OF LACTIC ACID BACTERIA IN
RESPECT OF PENICILLIUM ROQUEFORTI, PENICILLIUM
FUNICULOSUM
Byambaa A.1, Bykovchenko T.V.2*
1
Moscow State University Food Production (MGUPP), Russia
2
State Scientific Research Institute Baking Industry (GOSNIIHP), Russia,
e-mail: [email protected]
*Corresponding person
Abstract
This article presents the results of a study of antagonistic activity of lactic acid
bacteria against Penicillium roqueforti and P. funiculosum using a modified method
of testing of microorganisms in liquid model medium on the basis of culture broth of
the strain-antagonist heat treated, simulating the process of baking bread. Selected
strain of L. acidophilis a-146, showed the highest antifungal activity, and the
influence of the leaven from the use of this strain on the quality indicators and
prevention of molding of bread.
217
( < D 7
< 7 <
.
$ – <
. *? < Penicillium, Aspergillus. $
<
, ,
, D , , , , . $
D 5-10%; <
<
<
<
-
<
D
<
, D? D [1].
$
< <
7. , <D
-
% 7<<
<
<
.
( 7<<
-
D <
(=#). 8
=# D ? [2, 3, 4, 5]. ( H< F5E$
D =# 7 Penicillium roqueforti P. funiculosum.
$%&" '" !
FU< 7<< =# Lactobacillus : L. delbrueckii, L. casei, L. plantarum, L. fermentii, L. brevis, L.
acidophilus F5E$.
" =# <
<
%
<
<
<
[6]. ( - P. roqueforti P. funiculosum F5E$.
=
=# <
, D? D D =# < <
< < < <
<. $ <
7<<
=# ? -
D 10÷12
#. < 30 5 <
90
5 10 <, < . $
<
24 5 -7<<, 1,1 · 105 ./<. <
< 24
5 10 ., . " . 4-
< < [6, 7].
218
" 7<< =# <
< <
D 7D . ( < < 7
< .
E
< <
< <
D <
< %
, < F5E$ [1, 5].
()!" !
' 1 2.
" H<
, <
7<< L. acidophilis -146 7 < -7<<
P. funiculosum P.roqueforti, .
( <
7<< L. brevis B1 P. funiculosum 50%-
- P. roqueforti.
1 2, % 7<<
=#
L. brevis 3, L. brevis B5, L. brevis B78, L. casei 4, L. casei 5, L. casei C1, L. plantarum
Pl-30, L. plantarum >63,. L. delbrueckii T-2, L. delbrueckii 40 7 0 75%.
F < 7<<
=# <
U < < % ? <
< %
<.
5 < 7 7<< =# L. acidophilus -146 7D .
" 7 7
< 7 <
. ( , , %
, <
60% D < <.
219
'
1 - 8
7<<
=# 7 P. roqueforti
'
2 – 8
7<<
=# 7 P. funiculosum
""
<
%
<
<
<
<
7<<
-
<
,
<D? , UD =# 7 ,
<
, <
.
7<< =# D
< < , 7<< L. acidophilus -146. ' L. acidophilus -146 7
<
, <
7<<
=# <
< < 220
, D? <
D
.
+%!-/0 3
1.
=
D . - F5E$. – =
. –
2013 . – 18 .
2.
8%, F.(. =
[Q] /
F.(. 8%; 5.-$. %. . . <- (5$ F5E$). – 5$.: #, 2003. - 221 .
3.
#
Q.(. '
< <
. 2012 4. " ". =. 5
< ? <
/ ". =. ", =. ".
/G, ". 8. ; . 7-
. . – =. : #F=. /
, 2011. – 886 .: - (/7 ).
5. D %
/ 8.$. , '.". $
, =..
D
, /.Q. (
, Q.(., #
, .. "<, /.8. ‹
,
.=. , F.8. 5
, ).$. '
. - =
. – F5E$. - 2012
. – 31 .
6.
, 8.. 5 <
<
[Q] / 8..
, _.'. , .. 5
// « 8
». - R 3-1(75). - 2012 . - 5. 41-44.
7. $
, '.". =
[Q] / '.". $
, Q..
#
. - =.: F5E$. – 2001. - 54 .
221
=8 664: 004.931
8 9
7 8 8 =<
` J
7 ?..*
34&! (6& « " # "»,
, e-mail: [email protected]
* %, " '
<
7
H G
< ,
<7
< %
. (
H< NIR
D? (#") 7, , <D? D
G
<. #" <
% <
G
< < 7 NIR-
.
PREPARATION OF THE EXPERIMENTAL DATA TO OBTAIN THE
FEATURE SPACE RECOGNITION HIDDEN INFESTATION OF WHEAT
Khit Y. V.*
Kuban State Technological University, Russia, e-mail: [email protected]
* Corresponding person
Abstract
Development of methods for continuous rapid diagnosis hidden infestation of
grain mass requires the development of procedures for obtaining video suitable for
industrial application of the principle fotoseparatsii . This paper proposes a scenario
experiment for NIR- images for the training and preparation of the test database (DB)
wavelet - spectra of seed of spring wheat , both healthy and having a hidden pest
infestation . Wavelet -based database - spectra of seed possible verification of neural
network models and statistical pattern recognition hidden infestation rice weevil
wheat grain NIR- spectrum video.
, ? 7D , G< <. $
# # $ ? "#.
( D D D %
< G
<.
7 %
<
, 222
<
.
( G
<
?D
;
- <
< ;
- << <;
- %;
- H
< <
< [1].
5 %
< G
- . 5< ,
D?<,
< ?
<, D?< , D . ( , <
, ? . ? <
, . F <
< <
28-30 [2].
( [3] , <
?D %
<
< 7. Q,
% 90%,
% 100%. ( [4] G
#-
7
G
< << < < G
<
7 <
.
' [6] , # - %< D < G << G 7.
( [10] H%%
< %
<, NIR
[5] <
< 640x480 , 1305.05<, :
7; G
< ?
<; <;
<
<; ?
<. " < <
[7]. F
NIR-
<
<< <
?D
<<
[8, 9].
$%&" '" !
( H< NIR-
D? , <D? D G
. " D?
7 %, G
NIR <.
300 7 <? G<
20-D <
, < . *
2- < %
%. ( G, .. <D? D G
.
223
%
% 12 . (
10 %
%
<
1 10. U< <
?D
%
% <D?
<
950 <<. 20 <. U, %
< NIKON D500 U
< <
UG< &)Q8'-=. F <? G %
(
G
), ? < %< << <
?
100
( < 45º. 5< %
%
1. '< %
U<: , %< F11, < 5 ,
30 , ISO 200, - <.
'
1 - 5< %
%
.
1-% <, 2- %
<, 3- %
U,4- NIR %,
5-G <
$
%
-, <? <<, D << %
% (
2).
'
2 - <.
F , G
, D? . * 30 G
, .
224
Q – FD? G
R
%
%
01
01
01
01
01
R
%
.
1
1
1
1
2
R
.(
)
1
2
3
4
1
G
0
1
0
0
1
0-
; 1-
()!" !
( G
%
% ,
<D? D , G < . % 3. 5D?< H
<,
NIR-
<
- <
?D <<
[8, 9], D? .
'
3 – NIR .
""
=
7
H G
< NIR-
, <7
< %
-. $
%
%, <
?D %
% H
D D G
DD, < %
<. 8 <
%
<, UG< D
.
+%!-/0 3
1.
F5Q 28666.1-90 &
. F G
<<. * 1-4.
2.
#
(.8., ‹
8.`. ( ,
G '
: 8 . – :
2007. – 158 .
225
3.
Ridgway C., Chambers J. Detection of insects inside wheat kernels by NIR
imaging // J. Near–Infrared Spectroscopy, 1998, 6(2): 115–119.
4.
Maghirang EB, Dowell FE, Baker JE, Throne JE. Automated detection of
single wheat kernels containing live or dead insects using near-infrared reflectance
spectroscopy // Trans American Society of Agricultural Engineers (ASAE) 2003,
46(4): 1277–1282
5.
Singh C.B., Jayas D.S., Paliwal J., White N.D.G. Detection of insect-damaged
wheat kernels using near-infrared hyperspectral imaging // Journal of Stored Products
Research, Volume 45, Issue 3, July 2009, Pages 151-158
6.
Chandra B. Singh, Digvir S. Jayas, Jitendra Paliwal, Noel D. G. White
Identification of insect-damaged wheat kernels using short-wave near-infrared
hyperspectral and digital colour imaging // Computers and Electronics in Agriculture,
Volume 73, Issue 2, August, 2010, p.118-125
7.
. Statistica Neural Network. =
<
/ $
(.$.#
– =.: –Q
<, 2008.-392.
8.
!
C.(., . 8., '
F.(. «# D?
< » // † «< »,
=
, .8, 2, 2011, .342-346
9.
'
F.(., !
C.(. «
< D? ?
<7
» //
5
< < . – 2011. – R 3 (Z
). URL: www.science-education.ru/97-4668 ( ?: 15.11.2011).
10. !
5.(., E _.(. Z%%
G
7 NIR-
< // =
(
-
% «Q
<
, ?
<7
».#: 2012. – 5.145-149
226
=8 663.5:006.354
= 8 8 8 < ! .., %' .
., .X. , ! ..
! ( -" '"
# #$"# , * %, " H
, <
G , D? D . $
< <, .. ?
. ' <
7D D
<
<
< <
. $
<
<< < <
<
% <
, ? D .
THE RELEVANCE OF INDICATION OF ION CONTENTS OF WATER AND
VODKA WHILE QUALITY AND SAFETY CONTROL OF ALCOHOLIC
DRINKS
Polyakov V.A., Abramova I.M., Medrish M.E., Pavlenko S.V.,
All-Russian Research Institute of Alimentary Biotechnology of Russian Academy of
Agricultural Sciences, Russia
* Corresponding person
Abstract
Quality alcoholic product depends not only on the composition of ethanol, but
also on the composition used for its preparation of process water, which is the
dominant part of vodka. Process water treatment on the vodka plant is particularly
important because composition of water has a significant effect on sensory
characteristics of vodka. Implementation of measures to improve the quality of
testing of alcohol and raw materials for its production involves the application and
introduction of modern instrumental methods. Monitoring of the ion composition of
the water and vodka with the use of modern methods of ion chromatography allows
to identify and eliminate the causes of the decline in the quality of finished products.
227
$
<
<
7 .
F < < <
7 %
.
$
< 7D
<
, 7
, .. <
<
< H%%
.
<
7
,
D «4» ,
<
< < <.
& 10 1 [1].
=
<, . Z
<
<
.
<
, ? < , <
, , 7 [2].
"
7
<
D , < <
, D , , , <
D , , [3].
#
7
D < ?, D , <D <7D . <, .. 7
. < 7
D , <
-? , < , 7 << 7
.. [3].
( H< <
<
H<
.
? <
H<< <
, ? , , , , <
<
7 . 5 <
<, - <.
228
=
H< ?
.
( ? < < < < < .
$ D < , . F
7 <
D < <
, < <
<,
D?< , .
$%&" '" !
' < 7D D < <
< <
.
F< 7 <
%
<
H<
<
%. =
<
<
% <
7
<
. =
<
%
<
<D D ,
H
[4].
FU< ( 77
), ,
-
, «Z» , -
, ?
< D.
( <
% 761 5FMPACT IC %<
METROHM (‹), << < 100 <, < (Z†E, D?<
<<< (0-5) </<.,
<< < < (0-1000) <5</< ,
<
%
«METROSEP», < - < < < < <
<
< 7 <<, . <
%
HAMILTON PRP-X100 (125,0 4,0 <<), < - -
<
< <<
< <, <
< 10 <<, .
( HD , < < <
4
<=/<3 -2,6-
<
0,75
<=/<3, <
%
.
" HD <
2,5 <=/<3 (10%), 229
<
3,2 <<
/<3 <
0,5 <<
/<3, % ?
, ? ?
D . '
HD 1<3/<.
HD
-< < « 211
HANNA» (<).
"D << $5#2835, &8F «$5#-», <
?
D 250 (, %D ? <
?D %D?
%
<
<<
=-3 <
< 0,45 <<.
()!" !
( ? < <7
D <
< <
.
*
H
<
0,1 0† [7] .
'
< <
< , ? D ,
<<
, , , <, <
%
D?< <
<
.
"
< – 0,005 1,3 <
/<3 (†0), < <
,
<, – 0,1 10 </<3 .
' < < < <
, <, .
5
D , <
H <
<< 7 15% ?
(<<
) ?
< H<
.
# < <
<
<
<
<
%. '
.
Q – & 7
< <
=
"
$
7
<
<
<
F5Q ' 52407-2005
F 0,1 0† 0,40†
[ 57 0,40†]
50%....12,5%
[ ±15% ]
<
%
(0,005….1,3) 0†
±(15….17)%
, <
?D E-<
<
< 230
D <
< <
<
, D <
.
$
<
<
<, H
< -
.
( H< <
%
-
-
. -
<
< <
% < ?
HD.
( E-: «=
-
<< <
% %< METROHM»,
F5Q ' 53369-2009 F5Q 31641-2012, «=
, , << <
% %< METROHM» [5,8].
""
Q< <, << <
% <
<
, ,
<
, ? D <
. 5< <
.
=
=
$
-
F
<
=
(
$
<
%
=
Q
'
– 5< <
231
+%!-/0 3
1.
$
(.8., 8<
.=, =7 =.Z. ( – <
// $? <7
. – =
: 2012. – R 9. – 5. 46-47.
2.
# .. $
7 //
$
. – =
: 2001.– R 1. ž
5.15-17.
3.
# .. , (.. $
// /
. –
2003. – R8. ž 5.20-23.
4.
'
5.(. <
% ž < <
// Z
$
. – 2005. – R11. – 5 32-34.
5.
F5Q ' 53369-2009 (
. =
<< <
%. =.: 5%
<, 2009. – 8 .
6.
8<
. =., =7 =.Z., $
(. 8. . =
<< <
<
%
// E . ž=
: 2007. ž R2. ž 5.60-62.
7.
F5Q ' 52407-2005 (
. =
. =.:
5%
<, 2007. – 13 .
8.
F5Q 31641-2012. (
. =
<< <
%. =.: 5%
<, 2013. – 8 .
232
=8 637.3
8 < 8 LACTOBACILLUS < =8 7
= , c =<
8<
< ==
6%! ..1 *, " ..2, ! ..3
1
!6 «- 4 ""?», 4, e-mail: [email protected]
2
!& «4 " "/ " " " $, "?
", 4, e-mail: [email protected]
3
!& «4 " X "»,
4
*
%, " ( <D Lastobacillus %
<
, < <
. <
%
?
,
D? , , %
<
< .
DETERMINATION OF THE AMOUNT OF BACTERIA
LACTOBACILLUS KIND AND THEIR INFLUENCE ORGANOLEPTIC
SEMI-HARD CHEESE WITH A LOW TEMPERATURE OF SECOND
HEATING MATURES BY THE PROPIONIC ACID BACTERIA STARTER
CULTURE AND THE EXTENSION
Zabolotskaya T.A.1 *, Davydova E.A. 2, Lilishentsava A.N. 3
1
Scientific and Practical Center of the National Academy of Sciences Food,
Republic of Belarus, e-mail: [email protected]
2
UO Belarusian State Institute of Professional Development and Retraining on
standardization, metrology and quality management, Republic of Belarus,
e-mail: [email protected]
3
UO Belarusian State Economic University, Republic of Belarus
*Corresponding person
Abstract
The article deals with determining the amount of additional cultures kind
Lastobacillus their influence on the formation of the sensory characteristics of
cheeses produced with the participation of propionic acid bacteria with a low
temperature of the second heat. The availability of this microflora has a significant
impact on the proteolytic processes in this type of cheese when ripe and, as a result,
to create a picture of cheese and the formation of taste and flavor of the cheese.
5, < ,
< <. Q D < < < 7 7
.
< < Emmental, < Swisscheese [1].F?< < <
H
, D?
<
,
< < < [2].
( ' # <
. F
D, < < . 5 , < 7 , D < < <, 7
,
< , , . $
< «
%», «%
», «
», 7
, < .
" <
<
D < < . ( <
?D D? %
<
: , H
%<
, , < , [3, 4]. ( D < <
< Lactobacillus helveticus,
Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus paracasei,
Lactobacillus plantarum Lactobacillus sakei. "
, 7 D, , , [5]. F D D %
<
D
% : , , , <
.
TD Lactobacillus , < 234
, <
%
<
.
$%&" '" !
FU< , < <
.
5 <
< ? 45%, <
42%. !
? : <
<
<
(3950, Cryovac Paracoat®, . 5
35
.
$ <
: <
CHN-19 ( <
% <
) PS-4
<
( : Propionibacterium freudenreichii subsp. Shermanii).
5
, (
%
< ) 1.
Q 1 – 5
, LA-5R
L.casei-431 R
LHB-02
"
,
D? "
,
D? "
,
D? F
<
%
Lactobacillus
acidophilus
Lactobacillus casei
Lactobacillus
helveticus
E
$ ,
$ ,
$ ,
( 2.
Q 2 –( <
81
82
51
52
1
2
1
( < Q CHN-19,PS-4, LA-5R
CHN-19, PS-4, LA-5R
CHN-19, PS-4, L.casei-431 R
CHN-19, PS-4, L.casei-431 R
CHN-19, PS-4, LHB-02
CHN-19, PS-4, LHB-02
CHN-19, PS-4
=
<
/
=
<
/
=
<
/
=
<
235
<
2
( < Q CHN-19, PS-4
/
( <
?
. ( , <
. ( < Lactobacillus
, <
[6].
Lactobacillus [7] <
<
D D D '
.
$
5 < 30 5. <
Lactobacillus < D? :
, <
< 1-3 <<, %
<. $
[8]. %D
Lactobacillus <
< <
.
()!" !
' Lactobacillus 3.
Q 3 – 5
Lactobacillus <
1
81
82
51
52
1
2
1
2
( Lactobacillus
2
Lactobacillus acidophilus
Lactobacillus acidophilus
Lactobacillus casei
Lactobacillus casei
Lactobacillus helveticus
Lactobacillus helveticus
-
Lactobacillus 1
3
15108
89108
26108
94108
13108
92108
-
# 4
95
98
94
97
94
97
86
88
( , Lactobacillus . Z
U < <
<
< .
( H
, , D? < (
82, 52, 2), 7 D , <
< < D < 81, 51, 1,
< <
<
.
#
Lactobacillus . ! ,
, D D <
, < << 7D [9].
236
( , < < < (81, 82, 51,
52, 1, 2), D D D < < (1, 2), D?< .
""
' , Lactobacillus <
.
!
, Lactobacillus < <
.
=
, ,
< <
, Lactobacillus D 7 < < < .
+%!-/0 3
1.
Fröhlich-Wyder M. Swiss cheese / M. Fröhlich-Wyder, H. Bachmann // Cheese
problem solved / P.L.H. McSweeney. – Cambridge: Woodhead Published Ltd, 2007.
– Vol. 4. – P. 246 – 267.
2.
Fox P.F. Cheese: chemistry, physics and microbiology / P.F. Fox, P.L.H.
McSweeney, T.M. Cogan, T.P. Guine / 3-rd edn. Elsevier: Amsterdam. – 2004. –
V.2. – P. 142 – 156.
3.
Fox P.F. // fundamentals of cheese science / P.F. Fox, T.P. guinea, T.M.
Cogan, P.L.H. McSweeney // Springer, 2000. – P. 587.
4.
Kucukoner E. Physico-chemical and rheological properties of full fat and low
fat edam cheese / E. Kucukoner, Z. U. Haque // Europen food research and
technology. – 2003. - R 4(217). – P. 281 – 286.
5.
Kocaoglu-Vurma N.A., Harper W.J., Drake M.A., Courtney P.D.
Microbiological, chemical, and sensory characteristics of Swiss cheese manufactured
with adjunct Lactobacillus strains used low cooking temperature / J. Dairy Sci. –
2008. – V.91.–Issue 8. – P.2947 – 2959.
6.
5. Q : 5Q# 1373-2009. – (. 01.01.10. – =:
: #
. . - %, 2009. –18 .
7.
$
?.
=
<
<
<
: F5Q 10444.11-1989. – (. 01.01.91. – =:
: #
. . - %, 1991. –16 .
8.
=
<
. =
<
:
F5Q 9225-1984. – (. 01.01.86. – =: : #
. . -
%, 1998. –20 .
9.
Tungjaroenchai W. Influence of adjunct cultures on volatile free fatty acids in
redused-fat Edam cheese / W. Tungjaroenchai, C.H. White, C.H. Holmes, M.A.
Drake // Journal of dairy science. ž 2004. žV.87. žIssue R10.ž P.3224-3234.
237
=8 634.1.054:581.19(470.32)
7
8 7 7=,
= < ;
+! $.
.1ª, ! ..2
1
34&! (6& " ",
, e-mail: [email protected]
2
34&! (6& X " . .(.6#",
, e-mail: [email protected]
*
%, " $
?
< =
(Chaenomeles Maulei), . $
< ?<. !
?, , . 5
< 5 < 178,5 </100 , <<
0,24 </100 . (
'-<
< (231 </100 ), %
(138,2 </100 ). $
D < < . (
%
<
%
< – 45,7 </100 , % D < < 2</100 . !
(0,442
</100 ) (0,299 </100 ).
INTEGRATED ASSESSMENT OF FRUITS OF CHAENOMELES
MAULEYA, GROWN IN THE CONDITIONS OF THE CENTRAL BLACK
EARTH REGION OF THE RUSSIAN FEDERATION
Blinnikova O.M.1*, Eliseeva L.G. 2
¹Michurinsk state agrarian university, Russia, e-mail: [email protected]
²Russian economic university of economics named after G.V.Plekhanov,
Russia, e-mail: [email protected]
*Corresponding person
Abstract
Investigations of the nutritional value of fruits of chaenomeles Maulei or Japan
quince have been carried out. Fruits are rich in biologically active substances. The
high content of pectin, organic acids, ascorbic acid has been determined. The content
of vitamin C in the investigated fruits amounts to 178.5 mg/100 g, the amount of
carotenoids is at the level of 0.24 mg/100 g. High P-vitamin activity is caused by the
content of catechins – 231 mg/100 g, flavonols – 138.2 mg/100 g. The fruits have a
high level of antioxidant activity. A high content of choline – 45.7 mg/100 g is of
238
significant importance in forming the functional properties of henomeles, whose main
function is to normalize the fat metabolism and reduce cholesterol levels. The content
of vitamin PP has been determined at the level of 0.72 mg/100 g. The high iron
content – 0.442 mg/100 g and zinc – 0.299 mg/ 100 g has been also determined.
E
< – . $
< , < D
< < ?: %
,
< 5, < , . $
, < (1, (2, ''. Q
< <
< H% <. #
< D (
300
<%), <
. $D < ; – 7. * <
, <
,
, . ( < 7
<D D? .
( <
< =.
$%&" '" !
FU< < =,
? T*' '
, (5 <. .(. =, 20112012 .
E
< = (Chaenomeles Maulei), –
< – ?< E
D DD. _
, 5
< .
$<
200-250 < = G &D
)
, D, . (
'
. 5 EE < G . 5 , . 5 D U
.
E
< = – D 50-100 <. $
: G . /
, 3-5 <, . T 2-6 7. ( , -, <
< 2,5-3,5 <.
T 2-4 . $
7
, 7, 7 < <
< 4,5 <, G
-G <
-G, < %< <
< < <.
5
D – . 5 D 7 .
<
D? <
<.
239
()!" !
( 1 %
-<
< .
Q 1 – E< < =
<
, <
&
'
< ?, %
5, %, ..
- <
- Q< , %
5
, %
9,5
2,9
2,4
0,5
4,02
1,09
=
, %
1,16
" <
F5Q 28562-90
$
<
#
F5Q 6687.4-86
FU<< <
< 5._.
'
F5Q ' 52839
D , < << < < ?, 9,5%, D 2,9%. F
<
< – 2,4% << . 5 <, < = D .
$
< <, D
«< <
<». Q < < 4,02%. < , <
? – 1,09%. $
D <
<D < , D < 7, , ?, . <
H
< < D «?
< <». F<
– 1,16%.
$
< , , <
, , , %<
, %
. ( 2 < < < .
Q 2 – F < =
<
,
<
/<
, /
D - <
, </
L-
, /
D – , /
&
0,04
73,5
15,5
4,5
240
" <
F5Q ' 51129-98
F5Q ' 51129-98
F5Q ' 51129-98
F5Q ' 51129-98
2 , D?
< = <
.
F< <
<
( 3).
Q 3 - 5
H<
< =, </
<
$", " <
<
50
0,02
<4
<0,007
F5Q 29270-95
F5Q 26933-86 F5Q ' 51301-99
5
'
=7
ET
""Q
0,3
0,01
0,1
0,01
0,005
<0,02
<0,01
<0,02
<0,001
<0,005
F5Q ' 51301-99
F5Q 26927-86 =! 08-47/158
F5Q 26930-86 F5Q ' 51962-2002
F5Q 30349-96
F5Q 30349-96
$
< = D <
, < 7D $" <
D < 5$ 1.2.1.1078-01.
T7< < <
. " < < =
<
<
? 4.
Q 4 – 5
<
<
? < < =
<
,
<
8
, </100
5<< , </100
, </100
8
, </100
, </100
(< (1 (<) </100
$
< (4 (
), </100
(< (2 (
%), </100
(< '' (), </100
8
, <%
&
" <
178,5
F5Q 7047-66
0,24
5
%
<< <
<
5
%
<< <
<
231
(
Q
138,2
< 0,001 ..
Q
<.
/.
45,7
< 0,001 ' 4.1.1672-03
0,72
(Z†E
309,0
«T _-01-88»
(7< <
<, D?< , . $
D < D <
, <
. 5
< 5 <
178,5 </100. 5<< 241
0,24 </100 , <
< <
D.
=
, <,
D
D?, , < ,
, , %
'- .
$
, < 231 </100, %
138,2 </100 . *
, 7 .
$
< = , 45,7 </100 ,
, <
<. $
<D , H
?
< <.
< , < < (4 ; <
; 7 -<7
<
; ?; H%% %
; < D ; <
8<.
< D D – 309,0 <%. < , < <
< '' – 0,72 </100 . *
<
(1 (2,
< =, 7 .
< < < = ( 5).
Q 5 – = < =
<
,
<
, </100 %
, </100 =, </100 &
63
48
12
, </100 , </100 T, </100 =, </100 †
, </100 , </100 15
215
0,299
0,052
0,442
3
=, </100 E
<, </100 0,076
19
" <
F5Q 26570
F5Q 26657
$" 14.1:2:4.167-2000 F5Q '
51429-99
$" 14.1:2:4.167-2000
$" 14.1:2:4.167-2000
F5Q 30178-96
F5Q 30692
F5Q 26928
..
Q
<.
F5Q 30178-96
F5Q 26929
$
<
H< , ? <
. #
< D – 0,442 </100 ,
< <
. F<
– 0,299 </100 , < <
%
.
242
""
' <
< =,
? T*', D ?
. < D < , , , %
, , ,
H <
H<
. < , 7
, ? - ? .
F< .
+%!-/0 3
1. (
, .=. 8 5 / .=. (
. – <:
=, 2001. – 48 .
2. ), /.. F < < /
/..),
F.=.
#
,
)./.
$7
//
Q
. – 2012. - R6. – 5. 31 – 36.
3. D
, (.8. ' / (.8. D
:
! <. – ). – 1995.,
. 20-25.
4. =, (.. E
< / (..=. – =.: 85Q, 2004. – 64 .
5. `, /.(. 5
/ /.(. `. – =.: FFF «
8»: FFF «
85Q», 2002. – 272 .
243
=8 665.372
8 <, +! ..1*, ..1 , ' .$.2 , .+.2
1
! # #$" >0+, , e-mail: [email protected]
2
34&!(6& « " # "»,
, e-mail: [email protected]
*%, " $ , D? . , %
%
, ?
. $
, D H%%
D, %
%
%
%H
<, <
<
?
, #8" <
%
%
%
INVESTIGATION INDEXES OF QUALITY, SAFETY AND COMPOSITION
OF RAPE LECITHIN
Belina N. N.1 , Lisovaya E.V.1 , Gerasimenko E.O.2, Tarasova N.B.2
1
Krasnodar Research Institute of Storage and Processing of Agricultural Products of
Russian academy of agricultural products, Russia,
e-mail: [email protected]
2
Kuban State technological University, Russia, e-mail: [email protected]
*Corresponding person
Abstract
The indexes of quality and safety of rape lecithin represented. Qhe fatty acid
composition of rapeseed lecithin was investigated, a groups of the phospholipids
contained in rape lecithin represented. It is shown that rape lecithin have a high
biological efficiency, contain significant amounts of phosphatidylcholines and
phosphatidylethanolamines and can be recommended as a dietary supplement in food
production, and also as raw material for the production of biologically active additive
and modified phospholipid foods
& < D D <
<. $
< 244
< < 13%. $
<
H
2017 <
< 25,0
<. [1]. " '
.
( < < , D? < <.
, < %
%
D D
%
D , <. < , <, %
%
<, <
< , <, , [2]. %
, H< <<, D <
?, D < ? [3].
$%&" '" !
( U
,
% «/ =Z&» FFF «=Z& ` '» 5QF 2481-55505939-001-2011 «/ ».
F
%
-< 5QF 2481-55505939-001-2011 «/ »,
<
< <
< Q' Q5 029/2011 «Q
? , <
<
». †
F5Q 30418-96 «= . =
». %
%
<
< <
% < D? <.
()!" !
( .
( 1 %
-< .
" 1 <, D < 5QF 2481-55505939-001-2011 «/
» < %
-<< <.
( 2 , D? .
2, < D <, U<< Q' Q5 029/2011.
" H%%
,
. " 3.
245
Q 1 — $
E Q
5QF 248155505939-001-2011
5
<
5
,
%
%
<
<, Q
Q
%
%
60,2
46,5-65,0
?
0,5
1,0
?, < H
< H%
0,8
3,0
<
38,5
26,5-45,0
<
< , < F/
5,8
20,0
$
<
< , <<
/
3,9
25,0
T
, < 14
15,0
<
&
60 05
=
, %:
Q 2 — $
& Q
Q' Q5 029/2011
<7
= 0,02
3
0,11
5
= 0,001
1
<
Q
H<, </:
, 3, <
, D ? .
<
<, D? (67,5%). , D D ,
, [4]. $
? <, ?<
< ­- . , 7 ­-3 ­-6 (1:5)-(1:3) [5]. ( <
7 ­-3 ­-6 1:3,02.
246
Q 3 – †
<
,&(##&:
=
,
% ?< D
6,9
$<
516:0
4,4
5
518:0
1,4
8
520:0
0,5
#
522:0
0,3
/
524:0
0,3
7"#"##,&(##&:
68,6
$<
516:1
0,1
F
518:1
67,5
Z
520:1
0,8
Z
522:1
0,2
"$!##,&(##&:
24,5
/
518:2
18,4
/
518:3
6,1
, %
%
D < %
%
, ? . ( H< %
%
.
$
4.
Q 4 – %
%
5
%
%
, %
<
<< %
%
29,0
20,0
10,0
13,0
17,0
12,0
6,0
8,0
13,0
8,0
15,0
9,0
%
%H
<
%
%
%
%
% "%
%
!
,
D?
%
%
,
? , D %
%
(
29% <<
%
%
),
247
%
%H
<, D %
%
< < %
%
.
<
<, , D? < '
,
<
<
%
%
%
%H
<
<< %
%
, < <
, < < ? .
""
Q< <, <
D H%%
, %
%
%
, %
%
%
%H
<, <
?
, <
%
%
%
.
+%!-/0 3
1.
8 <
< 2008-2012 , 20132017 . - http://www.restko.ru/market/8726 ( ? 18.03.2014, <
? 13:25)
2.
Taylor S.L. Enrichment and fractionation of phospholipid concentratesnby
supercritical fluid extraction and chromatography. S.L. Taylor, .W. King, L.
Montanaril, P. Fantozzi, M.A. Blanc ItaI. J. Food Sci. n. 1, vol. 12 – 2000. - '.65-76
3.
"
8.. ? . ( / $
. 8.8. . – =.:"/ , 2009. – 288 .
4.
http://www.inmoment.ru/beauty/health-body/omega-9.html ( ?
17.04.2014 . < ? 11:26)
5.
8.$. $? < / 8.$., Q 5.)., 8.8. ./ . '. 8.$. . . 2-, . –
5$:F'", 2003. – 640.
248
=8 631.95
87
7 = 7=
- ..1*, +# ..1, ( $..2, 8..2
1
! -" # #$" #$"# , , e-mail: [email protected]
2
34&! (6& « " # "»,email:[email protected]
*%, " ( D
<
< (Heliánthus tuberósus) H< (Pb). < H< . #
< <
. T
D <
< %
< , <.
PECULIARITIES OF ACCUMULATION OF PLUMBUM IN ABOVEGROUND BIOMASS AND TOPINAMBUR TUBERS
Grigoriev A.A.1*, Borodikhin A.S.1, Rudenko O.V.2, Sova U.A.2
1
SSI Krasnodar Research Institute of Agricultural Products Storage and Processing
of Russian Agricultural Academy, Krasnodar,
e-mail: [email protected]net.ru
2
Kuban State Technological University, Krasnodar, e-mail:[email protected]
*Contact person
Annotation
In article results of researches to establish patterns of accumulation in the
topinambur (Heliánthus tuberósus) toxic element of plumbum (Pb). Accumulation of
plumbum in the topinambur is the result translocation of transition element from the
soil to the plant. There was studied the dynamics of accumulation of plumbum in the
aerial part, and in the tubers. The aim of the research was to establish whether the use
of topinambur for phytoremediation of soils contaminated with plumbum.
( ? < 7 D
<
, < <<, <
?D
. Z
<
%
< - "%
" () "<<"
249
(
).
( H
<
? <
< , 7D? .
Z
%
H. $
<
%
< D <
, << ? .
DD 7
< < <
%
H <
, <D? <
D
, < %
<.
F< D
, D? < < < D
? , %
< . - < 4- <
(,
<, <7, ), <, , .
?
D
<D D – 0,5
</ (Q' Q5 021/2011 «F ?
»)[1]. $
< ($") %
< < 2.1.7.2041-06 [2], < (F") %
< <
< 2.1.7.2511-09 [3].
<< F" 1 [3].
Q 1 – F" (
F" (</) < %
(),
32
65
$ < ("< <), + K!l<5,5
# <, ( ), K5l>5,5
130
( <
<
< ($" F") .
/<D?< < H
< – D .
', D? 7
D,
<
%
H G <
.
$ H
< , <
:
< D , 7D <, <
D D <, D <
< 250
<, < < < <
. < , , -%
H
< <<
<
<
<D <, < ,
?<
<<, 7< <.
$
7< <, < H< < < $
(. Heliánthus tuberósus) — $
< 8
(Asteraceae). ( < %
H
G <
< 7, <D H
, – , . ? . )
, ? <
7 , < 7 < , D ?D
D. ( < ? , D H
.
$%&" '" !
Z< < < <
< – < !
'
<.
< «
- (
<)»
? < <
<, DD?< %
-<
<
, <
<.
/
< !
E$
'
<
(8
'F55
RU.0001.21$`76).
" H< < <
, < <:
x =! D <
,
, =. T8F, 1982.;
x F5Q 30178-96 5 ?. 8
<
-
<
H<
;
x F5Q 26213-91 $
. =
?;
x F5Q 26212-91 $
. F <
<
% T8F.
" H< < «5
». $
< ? <
< < < < < 7-10 <. '
< < <
? <.
251
E : < (); D
< – < (6, 3%); – ?
(=8,07 8,14).
& , D , Pb(CH3COO)2 x 3H2O) .
$
15 <.
< , D .
" 35 < H< 0-25, 25-50 50-75 <. ' 2.
Q 2 – 5
(
%
<) 35
<
, <
3,85
3,95
3,91
0-25
25-50
50-75
5
, </
(
1
2
17,12
64,91
9,15
33,53
7,83
9,12
3
110,70
88,07
19,48
( , <
< ? D?
< (
1).
Z<
$
< F
: 0-25; 25-50; 50-75 <
F , W,
<
F
F < <
< 885
'
1 – 5< ' %
-< <
<
<<
< << «5» .
6.0.
()!" !
F
, , <7< 252
, < < , ,
<7< <
< < < (
4).
Q 4 – ", D? <
5 , <
#
< <
, <
¯ 19 , 7.
<
¯ 30 , 7.
<
š 30, 7.
(
, 7
#
< , & (
1
2
3
197,87 195,87 180,53
158,60
3,84
2,94
2,64
1,77
162
194
226
218
79
86
41
45
71
41
23
10
312
321
290
273
5,51
5,04
3,85
2,85
", D? < < , 5. ( H
<
< .
Q 5 – , 77
<D <
<
<
R
1
2
3
5
, </
1,732
8,263
13,870
20,220
:
1
2
3
0,097
0,565
0,654
1,311
:
= ,
3,84
2,94
2,64
1,77
11,19
5,51
5,04
3,85
2,85
17,25
,
77
<, <
6,651
24,293
36,617
35,789
103,358
0,534
2,848
2,518
3,736
9,636
$ %
< %
< , < 3,853,95 </ ( 2), <
1,732, 0,097 </ ( 5). $ <
, .
) D , 5, <
D D?:
< <
11,19 , 17,25 ,
.. 1,54 <7, , , <
< 10,7 7, < (103,35 < 9,636 <
);
253
< < <D 7< , < < 16,8 ;
< 0-25 < 4.4 ( 1, 2), <
4,7 , 5,8 ( 1,
5); 2-
3-
H D?:
16,9 ( 2) 28,7
( 3) D <
8,0 11,7 , 6,7 13,5 .
G H%%
? (#$) H%% (Q).
#$ 7 <
< D :
#$=5/5,
5 – <
<;
5 – (
%
<) .
Q 7D <
< D :
Q =5/5,
5 – .
#$ H< < «
-» ( 6).
Q 6 – ' H%%
#$ Q
(
1 2 3 & H%%
#$
Q
0,45
10,6
1,02
14,75
0,58
17,8
0,29
31,1
, #$ 0,29 1,02, , H< . (
<
, H
<
,
, , <
<
%
< .
H%% Q < 10,6 31,1. $
H%% Q <
D <
<.
""
' D?
.
1.
& < ?
<. ! D
254
, <7 <
< <
. H%% < <
<
< < 0.85.
2.
5
<
< 7 .
3.
& #$ < <, <
< D #$, H< .
4.
$
Q < <
%
H
, <
%
< , <.
5.
!, <
< H<<,
<
<
%
<, <
, , . ?, D? < , < , ?
%
H
<.
+%!-/0 3
1.
Q' Q5 021/2011 Q < Q<
D «F
?
» !. 7< < Q<
D 9 2011 . R880.
2.
2.1.7.2041-06 < «$
<
($") < ? ». !. < .
. . ' 23.01.2006 . R1.
3.
2.1.7.2511-09
<
«F
< (F") < ? ». !.
< . . . ' 18.05.2009 . R32.
255
8 5.
, 7J, 7J
256
=8 664.022 – 035.2:621.928.47
8 77 77
= ! ..*
& '"# #,
!, e-mail: [email protected]
* %, " ( <
-
<
?
. F
<<
<<
, , D <<
.
Q , D
H< <D < .
ESTIMATION OF THE MAXIMUM AND MINIMUM
EFFORT OF BREAKOFF OF SOIL CONTAMINATIONS
FROM THE SURFACE OF VEGETATIVE RAW MATERIALS
Vsevolodov A.N.*
The Odessa national academy of edible technologies,
Ukraine, e-mail: [email protected]
*Corresponding person
Abstract
This article studies the adhesion-cohesion interactions of contaminations to the
food (nutrition products) surface. The maximum and minimum effort to break-off the
most adhesion capable contaminations from a surface of vegetative raw materials is
found out together with a humidity value providing the maximum break-off effort.
The humidity degree when soil contaminations get fluid and quite easily washable
with a water stream has been found out too.
F
< < ?
. $
< %
-< , < D:
, , , <
, , . "
< <. (
- H
? , 7D D
<. /
H
<<. ) D /<2 /<2, <D <, << 7
< 257
. F
<
, <
<. ) 7, < ,
, . )
, <
D . $ <
. $
D ? . ( <<
< - H
< D <, - H
<
< < . Q , ? ?, <,
-
.
<
< %, D 7
[1]. ' ? 7
D , <D?
<D ? D, <
D?< < << < ?<,
H
< < <
. =
, D? 7
D
. $ <
, D?
. (
<
, <7 <
. $ H
< ? D <7, H
< <7 . ( <
G 7
, << << .
$
? G, .
7
, <
, ? < .
$%&" '" !
" -
<
. $, < , < . 8
< (.1)
G : <
, <
. ( <
4 D? G< <
<. " < 7 6 < 5. <
?D G < . (
7 $ 2, G
G
, <
3. ( <
D
<
%
1, < , 258
6 < 4. < 7, D D 7 <
< << <. ( < (.2)
8, < < . ( < <.
FU
< -
<
, %, , <
, <. ( G< , [2]. $
, , , <, <
[3,4], H
< <,
, <
, , < , < <
<, < <, .
'
1 - 8
< <
: 1 – , 2 –
7 $, 3 – , 4 –
< 7 , 5 –
<
, 6 – , 7 – 7 <.
'
2 - 8
< <
: 1 – , 2 –
7 $, 3 – , 4 –
< 7 , 5 –
<
, 6 – , 7 – 7 <,
()!" !
[3] , < <
<
< < D <
-, , ? < < H<
. < < <, (< (.'.,
5
< 8.., 5
.. [5,6,7], D H< <
< 1 5<<. H , < <
< 'Q - 1,
< <, < 1×1 <<. $
H
7 7
< 7% < 105±2 05 5 . (7 H
< <. " < 259
(
) 50 . 5
7 $,
, <
< G
. F, ? 7 $ 7
$ 300 < . ( H< 7 2 < < 3, < < <. " <
?D 7 <
< . ( D 7 , < ,
D < ,
< 7.
5 <
:
n
¦ m^ g
F.
(1)
^ 1
m – < , .
! , D G
, %
<:
V
F .
(2)
S
F
H< :
V
f (Z );
W
f (Z )
² – < , /<2; £ – < , /<2; ­ – ,%; s – ? ,
<2.
%
(.3…8) , < <<
, D <7 , <
, <<
. $ H
, 7
.
( % <
<
, < %< % . 3,5,7 <
< , 4,6,8
<
< . " , , G
D <. Z
D . " , U %. $ W17,5 – W25 - H
< H< 260
« – », H
<, < <7 , Fa<F F+{<F.
(
W25 – W32,5 - H
< H< « –
», H
<, < 7
, Fa>F Fa>F+{. , <<
, < , 7 < W32,5 – W40 : {
> Fa + F, <<< < : W25 –
W32,5, <. =<
2,1…3 7, < G<.
FU H
<, , <
? D 7 < G<. 5 G< , <.
261
'
3 – 1 - 2 –
G<, %
'
5 – 1 – 2
– G<, '
7 – 1 – 2 –
G<, <
'
4 – 1 – 2
– G<, %
'
6 – 1 – 2 –
G<, '
8 – 1 – 2 –
G<, <
Q G< D % D?: <
,
, . ! ? %
. Z
, D , <, G< < . $ < 2…3
<7, < . $ <
G< 2…2,2 <7,
262
< . Z
<, 7 <
<
. $
D 35 % < < D
, H
<, :
W32,5 – W40 , { > Fa + F
, ² – , /<; Fa; F – , ; W – , %.
""
1.
=< -
G< D 27…28 %,
D?< .
&<
<
-
<
2.
< G< U <
< < < .
#
7 <
3.
D < < U G
=
.
$ 35 % 4.
D .
& -
5.
<
<
< <
<7 D? .
+%!-/0 3
1.
(D 8.. =
% [Q] / 8.. (D, &.8. . – =.: (7. 7., 1961. – 326 .
2
&<
, 8.". 8 < / 8.". &<
. – =.: E<,
1974. – 416 .
3.
, .8. = <
,
<
[Q] / .8. . – =.: -
8 555', 1958. –
193 .
4.
, (.8. F
: 2 . / (.8. . – =.: ,
1973.
5.
#, (.=. / (.=. #. – =.: , 1977.
– 255 .
6.
#
G /.., ( (."., ( 8.5. .
$
. Q , % / . (.8. ,
#.. '
. – =.: (7. 7., 1988. – 368 .
7.
Q
%<
(.Q., G (.8., (
).8. . /
. %. (.Q. Q
%<
. – [6- .]. – =.: =!, 2005. – 1024 .
263
=8 66.02(045)
< 8- =
=.
1. < 8-
=
7 8-
! ..*, 4% .., ! 8..
0-6 " "
# #, # . ) # #, ; e-mail: [email protected]
* %, " $ < -
< -
. <
< 1:4 ÷1:2,5,
Q< H< < 20
5÷90
5, – 2,02-1÷436,56-1. (< H< 2000. $
< 4 < < <
. $ << <
CEREAL FOR WATER SUSPENSIONS IN PIPES.
1. THE RHEOLOGICAL CHARACTERISTICS WATER SUSPENSIONS OF
GRAIN AND CHANGE IN THE WATER AND HEAT TREATMENT
Novoselov A.G.*, Chebotar A.V. Gulyaev Yu.N.
St. Petersburg State University of Information Technologies, Mechanics and Optics.
Institute of Refrigeration and biotechnology, Russia, e-mail: [email protected]
*Corresponding person
bstract
There are results on researching the rheodynamic properties of water-grain
suspension and the change over during water-heating treatment. The suspensions with
hydro modules at 1:4 ÷ 1:2,5 are investigated, The temperature of the suspensions is
varied in a range at 20 °÷ 90 ° C. Shear rate is at 2.02 sec-1 ÷ 436,56 sec-1. The time
of each experience is 2000 sec. It is proposed to perform an assessment the
rheological properties of suspensions by 4 values of dynamic viscosity. There are
some equations to calculate the values.
264
=7
- < H
%<
((QF) <
<? <
<
< [1]. $
? <, < ,
D? <. #
, (QF << <<, -
<,
< , D? < D?< <, < <
, 7
<< <7D?< <. < << < <
. F
, 7
< - 7 , < -<< < <
. Q< <, (QF, < , [2, 3]. Q< <, D? -
< D . '7 H
<
D ,
D?
<
< <.
$%&" '" !
( (QF -
-<
<,
< <, <
, < <
. Q %
< < ? < 7 <,
<
%<
, <
% (
<
).
( D , (
) <, , << D % D
,
<<<. $
< , -
D, H D
< <, , , D < <7 1. $<, H
< <
, .. 20
°5 90 °5 [3 ].
265
F D D
? ~,
D <
< <.
( < D
<
< < < D < < < D
(1)
W
P
dU x
d
(1)
P – H%% <
, $•; dU x – < X, </; d – < Y , < X, <;
F
7
dU x
d
D < D D J , < <,
(1) <
(2)
W
PJ
(2)
" , D
,
H%% <
, ..
μ=const. ( D
μ <
, P f (J ) .
<
7, -
(QF
D
<
<. $
< H D
D < (3)
P
K
J n
(3)
$
(3) (2) < (4)
W
K J1 n .
(4)
( 1 – n m, 7<
W
K J m
(5)
m < 1.
( H%% K «
», m – « ».
TD K m
? (5). Z< <
< RHEOTEST RN 4.1 SE. ( U <
<
100 % < < 1 <<. <
< 1:4÷1:2,5. $
<
< < <
266
7 <
. Q< H< < 20 5÷90 5, – 2,02 -1÷436,56 -1. (< H<
2000 .
()!" !
1 % <
, D?
< <
-
<
<
< .
'
1 – < <
-
< <
< J 16,32 -1
8 , -
< <
:
x -
< D?
20 °C 50 °5: H
< H ,
% < ?;
x 7 50 °5 90 °5: < 55÷62 °5
<, <<, < < 7< -
. "7 <, <<
% % (< <
). F
< <, -
<. (
<<<.
$
%< <
< (. 1) <
, D <
D < <
< 1:3 1:2.5.
< 2;
267
'
2 – < H%% <
< 20÷90 5 (
<
1:3)
x D? : < 90 °5 <<<. $
, D? < .
, -
<
, < D? %<
, <
(
1:3,5 7), , < <
< 7 H
< .
! ?
, . 2, <
, <
, (QF
, D?
(QF. Z
μH%%1 < , <<
μX2, <<
μX3 μH%%4 < . & H
H%%
<
.
F
H< << <
(6) μ .
" 1, D? (QF 20
5
P ýôô
K ˜Cq
J n
(6)
.
0 – <
% ; 0=M$/
"; M – <
<
, ; = – < , .
& H%% K n q ' Q
1
Q
2
Q
3
Q
4
n
0,98
0,78
0,8
0,87
1079,1
668,72
8447,74
7909,57
268
q
2,4
3,6
2,85
2,23
""
<<
<
H%%
<
-
< D? %<
.
+%!-/0 3
1. _
(./. Q
– =.: , 2002. – 465.
2. 8.., <
Q.5. #
.(., . $
7
H%%
< . 2. $
<
%<
5#8 // Z
«$
? ». – 5-$,:
5$!$Q, 2011. – ( R1, <.
3. 8.., *
8.(., <
Q.5. E < -
%<
((QF) . //
Z
«$
? ».
– 5-$,: 5$!$Q, 2013. – ( R1, <. – 5.30-47.
269
<-72
36.87
=8 663.551.7
< 7
= =J 8=J ; ; =
40 ..*, ) 6..
34&! (6& «
" #
"», e-mail: [email protected]
*%, " ( < % 7< < 7 7 <
D? #'!, D ?
H
%
7
< F5Q.
THE DEVELOPMENT OF NEW TECHNOLOGICAL METHODS OF FUSEL
AND SUBFUSEL FRACTIONS UTILIZATION ON THE WASH
RECTIFYING INSTALLATIONS
Chich S. K.*, Tazova Z. T.
Candidate of Technical Sciences, associate professor, Russia
-mail: [email protected]
*Corresponding person
bstract
In the given article the author offered the profound processing of fraction with
the high content of fusel alcohols and fusel oils directly on operating wash rectifying
installation (BRU) in order to get the food ethyl rectified alcohol and the fusel oil in
accordance with the state standard (GOST).
(
<, ? < <
<
. $< 7 H
< <
?D <
% . $
H
< D?< .
( 7< %
7
%. <
?
G
270
400 . . ( H
G . $ < , H
7 '
, 7 % < <
. , G, 7 7 < <D D H
, < <,
<< ? < . Z
< < 7
%.
'7
D
7
%
%
(#'!), <
< < < .
7< < 7 7
< D D <,
< %. Z
H%% < <
%
, 7 < , . (
<
<<
< <
H
H%%
< <.
$%&" '" !
( U 7 7
% 7< < 7 < H
?
H
%
7
< F5Q 17071-91. [1]
( <
% <
– – < %
< 7
<
[2] % < – . E
<
%< <
<
7
%.
()!" !
'
, D?
%
7 <
, < < «Z» «/D», <
7
<
D D 7
<.
$
7 , ? H
7 , D?
7
<, D < #'! -
<
7 %
, < 7 , 7 .
< 7 <
H
12 20 . %. F
< <
< 7
% D H
,
7 . E
<
%< <
< 7
%. F
, - 7
H
7
271
<. QD < , DD? HD
D D , .. , D <
D
< < ,
D?< #'! .
F<, <<
<
H
%
7
% 7<
< H
.
! @ < C:
<
#
ADE
B
@ (
C:
)
<
C:
<
< <
#
E
B
#
&
<
<
B
A:
'" !
&
<
-
&
!
– *<
<< '
1 – =< <
%
7 %
7< < H
272
!
5
3
#!
"!
6
1
)
4
2
&
$ '-
#$ 8
: #$ '( ($ $)
'(
7
"(
($ $)
'
2 – !
H
%
7 %
7< < H
" <
D? #'! F8F 8$ «
» <
2, ? D? <
:
1) 7 4 HD
HD 16 HD HD
;
2) <
< 7
% HD
;
3) < << H%
% % ;
( < , < HD
, D <
D? .
273
5 <, < D 7
%.
""
1. '
<< <
%
%
< <<
<
, <
<
-
< <
<
< 7
% 7< < 7 < (
%
<< Z(=).
2. '
, D?
#'! %
F5Q ' 51652-2000 7 % 75 % < «I ».
3. '
, D?
#'! %
F5Q ' 51652-2000 7 %
65 % <
«(7 ».
4. '
#'! < 7 7 % 7< < 7 < H
D 7 7 %
< ?
.
+%!-/0 3
1. F5Q 17071-91 «=
7
».-=.: F55Q8"8'Q '
.
2. =
F.(. '
<<
<
<
7 % %
: ". ... . . , 05.18.12.-
, Q!, 2006.124 .
3. /
.8. =<
<
7
< %. ". ... . . ,
05.18.12.-
, 2006, Q!.-165 .
4. Q
/ _
(./., =
(.8., 5<
(.8., .
/ $
. - . , %. (./. _
.-=.: , 1999.- 464 .
274
=8 541.18.045
77 ..*, -5! ..
! ()) '" # #$, ,
e-mail: [email protected]
*%, " ( ?D? << ?
<7
<< (=$) . $
, 7
<<
:
<
%, %, % <
.
"
, <
H%%
<
< =$. ' <? << .
F
? < =$ ?
D? <7
, %
<: , < , %< < .
$
, =$ D < ?
<7
<
<<.
MEMBRANE PROCESSES AS BASIS OF INNOVATIVE
TECHNOLOGIES OF AGRO-INDUSTRIAL COMPLEX
Kudryashov V.L.*, Pogorzhelskaya N.S.
All-Russia Research Institute of Food Biotechnology, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
The list of present and used different types of membrane processes (MP) in
food industry is stated in this article. It was shown that mostly spread are
baromembrane processes: microfiltration, ultrafiltration, nanofiltration and reverse
osmosis. It was proved that biotechnology could be efficiently developed in system
unity with MP. The advantages of membrane bioreactors were discovered.
Traditional fields of application of MP were generalized for nine branches of food
and processing industry, and five new fields of application: production of protein out
of eggs, yeast and green biomass of seeding grass, enzyme of superoxydismutase and
bacteriocine nisin.
It was shown that MP are main modern innovative technologies in food
industry and could be probated at production of domestic membranes.
275
5
H
< ' (QF <
%
(
7
) , D , D? <
< <<< < (=$).
( <
? 7
=$,
D?, <, < << (<
< ,
<< <<) ?< <, DD?:
- << (#=$) – <
(FF), %D (),
%D (!) <
%D (=);
- H
<< (Z=$) – H
, H
%
, , < H
;
- << (=) <<D D (=");
- , <<;
- <<
%%
(=").
$%&" '" !
( < < #=$. <?
D < , %
, << . $
H
<, #=$
U
D < < , <
, <, %< . ? (#8(), , 7
?
. $ =$ D:
;
, ; «»; <7 H
(<, D < 4-5 ).
(
? <
H%%
<
< =$, < <
D ,
? <
< #8(. (
D D +-##&
+!"-)"-& (=#'), <
< (%<
, , H
, <
) <<<
<
< < (=!).
( =#' < D <
< <<. F D < <<
< %<< <
<<, . F – <, %< ( <
<
) < <D <
D?< < %%, –
<
D <? [1].
276
()!" !
Z%%
< =$ 8$ < ? <7
.
$ < =$ . 1 ( D< ? ). < :
- , <
, , [2-4];
- H
< [5].
Q 1 - F < =$ ?
<7
F
5
/G
$
=
<
= D?
<
=
$
?
5
(
"
5% <
$
%<
, [1; 5]
F () , G
%
(<
, ) [3]
$
; «» / ; [6]
$
, , < ;
; < «» <
[7]
' ; , %<
; < , < , , [8]
$
%
, D, H [9]; <
, D
, D
-%
%
$
7
[10]; < F, «» ; [11]
F %%
%
<
;
<
F, (
), «» <, (www.technofilter.ru;
express-eco.ru)
$
(8.. 555'
R1634710)
' << (/=Q) ($#Q D? =$, <
:
1. ' (
, %<
) Saccharomyces, Torula Candida %, <
==
<D % < , <
, , , , . 5
< <
<7
, D < ? "
< R 8 5$ 2, 3, 2.1078-01 01.07.2008 . < – D<
D () 620) D< () 621).
277
2.
$
<
%<
< (5F") [12], D – < – . F < #8(, D . < , 5F" 7
<< H%% <7, , , <, < . F ?
,
<,
<
.
< 5F" <
?D =- !- << ===32,5 " ((Cu, Zn – 5F") ===86…88 " (Mn – 5F").
3. F (95% ?
) <
< (== = 46000) –
<
(== = 28000), <
< . Z
?D <, <
< <, .
5 <
?D =$ <
<
%< < (===14600). F
«<» < <<
<
<, <
<
.
4. $
? <
% < ,
D . (
<) < (
<
) % D?< < !- << [13].
& , D , (
45%) <
5, ), , (, " -
.
7
%
, H%% % –
.
5
? D #8( D <,
<,
?D?<
<
<, D 7D <
.
Z H%% ? <
<, <
.
$
H
[13] <
D, <D < , < - .
5. $
[14], H%%
, <
, <7
. $
< 15…25% D H
<
278
, 7 < < D ?, .. .
Q <
, < ? H
,
, , . <
<
<
%
.
""
/=Q , H
<H%%
<
D =$ ?D?
, < <
< <
<? < << <
[15].
G , <
32- ?
D? <7
, <
G, < < , <
. Z
< <
9 ?G < (5Q$),
?
, <,
%
.
#=$ H
< H%%
< 8$ , ?
<< –= =".
F D D
H
, ,
?
, <D? <
.
= < < 30…100°5 < 30…70 << .., =" - < <
%
<, G <
H
<-
.
=
8$ ' =$ U
<
D
, 2013 . . (< 7 )
<< << <
.
+%!-/0 3
1. 7
(./. '
<
<<
? // ( . «$
%< <
» - =.: ($#Q, 2012, 5.159-168.
2. '
#.). 5
< <
<7
. – =.: "/, 2004. – 328 .
3. # .. Q
. – =.: $?
<7
, 2010. – 360 .
279
4. 7
(./. % – // $
, 2011. - R3. – 5.20-25.
5. 7
(./. $< << // Z
<7
. – 2009. - R3.
6. 7
(./., 8.5., $
F.$. < << //
$
. 2008. - R2. – 5.22-25.
7. 7
(./. $ <<
<< <
<7
// 5. . VII =. -.
%. (. =, 2-3 . 2008 .). – =: $T 8 #
. – 2008. – 5.
320-325.
8. 7
(./. $ ' <
<7
<<
<
-?
,
<< // 5. . 14-
=.
. %. < (.=.
«$ <
». – =. - (=$.-2011. – 5.127-132.
9. 7
(./., / .". $< << <
<7
// Q. =. -. %.
«< <
, ». – =.: FFF
«$T (
-8». – 2011. – 5. 210-213.
10. ‹7
(.8., $
(.8., 7
(./. $
<< %<
<< //
E . – 2007. - R3. – 5. 49-52.
11. Z.5. . #
// 5. <. (
. -. %.
'85E (. 2009 .). – !. – 2009. – 5. 47-50.
12. $
).5., 7
(./. ( %< < // ( . «=
D?
8$». – =.: ($#Q, 2006. – 5. 88-97.
13.
7
(./. $
-< < // $? <7
. – 2010. - R2. – 5.1315.
14. 7
(./. . 5 < // #
. – 1995. - R2. – 5.25-28.
15. 7
(./. < << ? // 5. . .. %. '
< (!, (=5, . 2004), !:
'
<. – 2004. – 5.182-189.
280
-92
36.86
=8 665.355.97
``c 7 ;;
8 8=
# .+.*
34&! (6& «
" #
"», , e-mail: [email protected]
*%, " <
%
%
#8" «(
» < <
<
< 7
<. '
, H%%
' <
$8( % <
%
%
<
,
%
<< <
.
ASSESSMENT THINNING ABILITY COCOA BUTTER AND
PHOSPHOLIPID PRODUCTS
Daishowa A.B.*
GOU VPO "Maikop state technological University", Russia
e-mail: [email protected]
*Corresponding person
bstract
Investigated the sorption interaction of sunflower activated phospholipids and
BAD "Vitols" with the basic structural components of chocolate mass. The results
showed that the Rebinder effect caused by adsorption of molecules of surfactants at
the expense of hydrophilic groups of phospholipid molecules on the surface of
microcrystals of sucrose, water-repellency treatment of their surface and the changing
nature of contact interactions.
'
7
%
7 < , ,
<
<
< < <, <
< $8(, <
( 7
< <
< < < . (
< D < <
281
< < < < <,
D? H .
< , <, <7< <
<
D <
< < , <D <
<.
<
. Q
D <
D, D , D ,
7 < << D 7
<.
5 7
<, <
$8(, , < D < <
D % %
,
<
.
Q< <, 7
< <
<
D %< < < $8(.
< $8( <
<
< ? << , < <
D , 7
< .
$%&" '" !
( U
<
,
%
%
( $8) #8" «(
».5 D
< << < <, $8 #8" «(
» .
<
< <
. 5 <
?D /H<D
D <
.
$
.
= < < < ? 7. E
< <
, ? , %
<:
F = S / h,
S - , /<,
h – ? , ³.
" <
? < 10 ³, < 1 /<, 107/
<2, .., <
10, <
H
<
%.
282
FD , < ,
<< <
?D , D < <
% <
H%% <
< .
!
, <<
, <
< < $8( 16 ˜ 10-3 /< 1,6 – 3,3 ˜
10-4 </. $
H %
< , <, H
< D 16 <$.
(
< < < <
. H ".Q<
< 5.#
< ?
< <.
$
<
.
&<
%
< < <
.
( D
D <
<
<
. Q < . $
D .
< , % .
$
, 7< , < D.
, D? < <
<, D < . '
<
?
, ,
, D? < <
<
<.
()!" !
( 7
< , < < <, <
D <
$8(.
$
H <
, <
H , < $8(, < D . Z
7
<,
, D? .
5
, %
, D? D < , D 7
<.
( $8( < < .
" 1.
283
18
14
-3
$
, 10 , /<
16
12
2
10
3
8
1
6
4
2
0
0,4
0,6
0,8
1,0
1,2
1,4
1,6
2
$
? , < /< '
1 – < $8( :1 - #8" «(
», 2- $8; 3- 5 (
)
=<
$8( D
<
, < . (<
D . F <
< . <7 , , H
<, 7 D
<
< < << , 7D . $8, #8" «(
», D 7 D <
< -< ?<. Z
, , <7 %
D - ?.
#
7
<
<
. <
?D ?
<
<
< $8( < . $ H
< , 7< <
< $8( , , ,
< < .
$ 7 , <
7< < <7.
< #8" «(
» , #8" «(
» 7
D < .
$
<D , DD < , < 7
<.
284
Z%%
$8(,
% H
< " H%%
$8( D?D , #8" «(
» 0,2%, <
$8 - 0,4.%. " 2.
$
, #8" «(
» %
%
D? 5.
Z
, 7 , < < #8" «(
» $8 %
%
, < .
6
5
4
3
2
1
0
1
2
3
'
2 - "<< H%%
$8(: 1 – 5 (
); 2 $8; 3- #8" «(
»
( 7
< < 5, $8 #8" «(
».
Q – ( $8( 7
<
F 7
<
‹
< <:
5 (0,4%)
$8 (0,4%)
#8" «(
» (0,2%)
<
$ (
40q5, $˜
, $
'
14,8
12,4
10,2
5,5
3,8
2,5
8,6
4,3
2,9
, 7 < 7
< < %
%
0,4% < #8" «(
»
0,2%. <
%
%
#8" «(
» < <
<
< 7
< , H%% ', <D?
<
%
%
, <
$8( % <
%
%
<
, %
<<
<
.
( H
D H <
D %
< 7 .
285
Q< <, , %
%
%
%
#8" «(
» D
H%%<
-<
<,
D?<
< 7
<.
""
' < %
<
< <D #8" «(
» $8 7
<.
'
< 7
<.
+%!-/0 3
1.)
".,& =.//$
.=.,2003.-5.208-215
2.)
".,E
E,& =.//$
.=.,2006.-5.186-191.
3.&
8.(., *
(.$., ..
%
-< <
< .- .$?
,1982,R1.
<.4.!
.#.,
Q
=.8.$?
8
<,2005,.130-141.
5.What is consching a controversy explode. Pratt-Iohnson Willian.Cardy an/-2008153N1.
286
=8 664: 634.7-021.631
87 9 = 8
`7
+- $.*., ..
34&! (6& «" - !6», e-mail: [email protected]
*%, " $
?
H
. FU< H <
<, <
. <
< . , < < H <
: H 20 < < 60 5, 7 ? H, H
< 20- <. <
D, < ?
<7
, < , <
< <.
DYNAMICS OF EXTRACTION OF DRY SUBSTANCES OF MARC BERRY
Bogdanova O.A.*, Ivanova T.N.
FSEI HPE «State University - UNPK», Russia
e-mail: [email protected]
*Corresponding person
bstract
Method for production of natural juice drink on the basis of extracts from berry
raw materials. Objects of study are extracts from the husks of raspberry, black and
red currant. Marc were received after juice extraction by means of pressing. Based on
the conducted definitions, selected the optimum mode of extraction berry Marc:
extraction for 20 minutes at a temperature of 60 5, as the greatest content of pectin
substances in extracts obtained by extraction within 20 minutes. From this survey we
can conclude that the use in food industry such waste juice production, as the juice of
berries, is rational and justified.
<
<
H
D? 287
<7
< , .
5
< <
<<
? <
. Q
? < 7
< D
, 7D ?
. 5 <
< .
F
<7
D
< < . <,
D < 21 % <
[1].
$D? ? , <
, D?
< %
< <. ( < ?, <
<
, <
- <
H<
. < <, < D.
TD < H
<
<, <
< ?, < , ?.
$%&" '" !
FU : < <, <
, <
< .
$
< < H <
, < D?
H
< ? ?.
$
< < 7 1:0,4
(
: <) < 60F 5. (
7 < H ?
<<.
$
H : 10 <., 20 <. 40
<., < <, < <, 9 H
, D? H.
$
H
. < < ? ('5().
()!" !
" -
< <
< ?. Z
<, < ? D
,
. ( ?
288
<
. 5 D < ( ) < ?. <
<
, % , <
, %
, <
<, 7 <
< ?. (
D ? ( < < < –
, %
, %
%
, .), <
, ? (, D
). 5
?
< ?
.
" ? <<<. " <
? <D
%
<, < .
F '5( H < %
< < ' 454 #2=.
Q 1– 5
< ? < H
(<
(<
(<
<
<
<
( H
(< H, <
10
20
40
10
20
40 10 20 40
5
'5( 4,2 6,3 8,8 4,7 6,8 9,1 3,9 6,1 10,4
, <
, < H < ?
.
Q H ?.
$
<
<. $ <D <
%
7,
7D ?, D < <. Z
? <D ? 7
< , <D <
, ? , .
F
<
D H%%
D ?, <, 7
. H< < ?< <, .
< D< ? % . 8
H%%
, ? < 289
7
. !
< < ?, 7 , , < . $
D
D<, D?< < <, D
,
H
< < D [2].
=
? < H
<
Q 2–5
? < H
(<
(<
(<
<
<
<
( H
(< H, <
10
20
40
10
20
40
10
20 40
5
0,1
< 0,03 0,01 0,12 0,21 0,14 0,08 0,19
3
?
2, <<
?
, H< 20 <. $ H <
20 <, ? <7, <
7< < <
< .
""
, < <
H <
: H 20 < <
60 5, 7 ? H,
H
< 20- <.
<
D, < ?
<7
, <
, <
< <.
+%!-/0 3
1. (
&.(., = 5./., #
8.`. F <
% < <
// 5
-H. ' < H
< '. #:
= . – . %. / #. . H
<. -. #
. %-. –
#
, 2002. – 5 . 418-419.
2. 5<
8.., !7 (.#. ? . Q . - =.: 8
<, 1990. — 276 .
2. http://e-lib.gasu.ru
290
=8 663.8
< =7 =J 8 9,
=< 8= 3 ..*
34&! (6& «W? " $" "»,
, e-mail:popo[email protected]
*%, " ( <
7 < 7
7
,
D? D 7 < %
<, 7 D <. TD H%%
%
< ? .
RATIONALIZATION OF TECHNOLOGICAL PROCESS FREEZE-DRYING
WATER EXTRACTS RETRIEVED FROM WILD-GROWING MEDICINAL
PLANTS
Popov V.G.*
FSEI HPE "Tyumen state oil and gas University, Russia, e-mail:[email protected]
*Corresponding person
Abstract
This paper presents the results of research on the rationalization of the freezedrying process of the production technology of instant powder concentrates for
school meals, with the ability to improve memory, perception of information, to
improve concentration. The aim of the research was the study of efficiency of use
presents technological processes for functional concentrates on the basis of local
wild-growing medicinal plants.
$
< < 7 < , 7
, % [1].
291
( – < <,
? G ?
D D << < [2].
F< 7 ?
< <
7
<
?
-
,
D < %
<. ( <
%
,
<D? <
DD D, <
< [3].
$<?
< <
< 7
(#$) – ?
D?
QD<
, <
<
< < <, %
<
. Q
H<
%
, D? %
, .
$%&" '" !
FU< H :
- ( 7-14 14-18 D? <
QD<
);
- , < % F!;
- (7
) ;
- < QD<
7
;
-
?
,
D? QD<
(
, );
- #$ , ,
«5
», «QD<», «&
», «#
»;
? (#8(), < #8" «(
– Z-5», #8" «5
»,
7 <D;
- <
%
, < 7
.
8
< ? <D? <
<
< 7 –
% 7
<
<
? (#8() ?
%
%
<
, ?? < H
<
7.
292
" < ?
<
, %
<[4].
()!" !
Z<
, <
< << < <
H
< < 7< << , < H . " H
<
< 5, , ..
H
, D <
[5]. <, H t=-0,8°5 3,6
<. $
H
< D? 95º5 80°5, < 45º5, 45-50 <.,
< 7, < <. $
7 7,0 , , < H D
(
8,5 10,2% 77 H), <
D .
< H
t=-1,8-2,0°5, 2,5-2,7 <. $
7 , 7 6 .
< H .$
7 (
<
<,
< H , < G ) ? 90 <., D < <, ..
H
< <5 12%.
'
– $< <
7 H .
293
$
, , < H
/'5 D < 5 (
90,4±1,1%
93,3±0,5%), 7 <
D (1-2 <. t=22±2º5) <
< %
.
!
< << #8(,
<< < 5 . ( 1
H
<
, <
7.
Q 1 – ( ? H <
<
'
$
? <
,
Z :
,
/
H, <<
%
3,2±0,2
7,2±0,4
7,2±0,5
#
3,0±0,2
5,8±0,2
6,5±0,8
2,7±0,1
6,2±0,9
5,1±0,3
$
< <
, <<D
? H 7D H 93,3%. " < <D 7D 7,2±0,5%. F < <
7
< H
.
( 7 %
%
, D?
< H%%
< 7D < #8(, %
%
<, <
< ), << ?<. F< <
<
7
(#$) «5
» «QD<» <
– %
%
< #8"
«5
». $
< H< ,
< G
<
%
<
7
,
< .
$
#$ ?
D, D?< , H<
, < H<
.
""
$
< , 7 D < H . " H < <7D ? 2,7 <<., <
t =-24°5, 7
294
< t = +35±1°5,
10,5±0,5 . Z
< G
H 2,7 /<², D 93,1±0,1%. (
6,2±0,9%.
" <
<
< 5
82,8 91,2% .
Z%%
D
< %
: 25,54%, ?
28,75%, 72,8%, < 71,08%, 80,3% < 51,2%,
< 5 – 91,2% —-
91,2% .
( #$ < ?
47,03 58,12% . ( 80,1%, 59,3%, 80,4% 64,6%, < 5 – 82,8%, – 82,6%. ( 7 < 87,2%, 85,1%, 93,6%,
%
%
92,2%, < 5 - 85,2% < ) – 87,1%.
$
D < G< H<
< 7
3-5 .
#
7 H<
<.
1.
2.
3.
4.
5.
+%!-/0 3:
«F
'
2020 » 25 2010 .
. ). "
? < 5 /
.). , ). 5 (. - : , 1980. - 5. 18-34.
<<< 8.. / (–): .
$
/ 8.. <<<, .. , 8.8. _
-E< – 3- .,
. .-=.: (7. 7. 1983. – 400 .
.8. Q
<, %
< %
<
<
< 5: '
<
< ? / .8.
, =.$. , ).(. / $
.=. 5, (.8.
Q – =.: #-=, 1998. – 98 .
E<
8.., )
<
.8., ' 5.8. %
//5
5Q!. 5 «$
»R1, 2005. - 327 .
295
=8 663.8
; 9 7
< 8=
787 98
3 ..*
34&! (6& «W? " $" "»,
, e-mail:[email protected]
*%, " ( D
H
?
<
<
H
. H
<<
H < 5 ?. TD < <
H
,
<<
< H %
< 5.
INTENSIFICATION OF EXTRACTION OF SOLUBLE
BIOLOGICALLY ACTIVE SUBSTANCES FROM WILD PLANT
MATERIALS BY THE METHOD OF ELECTRODIALYSIS
Popov V.G.*
FSEI HPE "Tyumen state oil and gas University, Russia, e-mail:[email protected]
*Corresponding person
Abstract
This paper presents the results of studies of the process of extraction of wild
vegetable raw material by the method of electrodialysis. Studied variants of use of
various extractants for maximum transition from raw materials in the extract of
vitamin C and other biologically active substances. The aim of the study was the
finding of optimal parameters of a technological process aimed at the maximum
preservation of ready-made extract deficient nutrient and vitamin C.
'
< 7
<
?
7 < – %
,
.. % < .
, << <
H <<
? << < <
<< G <
90 – 95 °5,
296
D 10-12 <. F
<
< < ? (#8(),
< 5.
$ < <<
< #8( <<< < <<<
< < 5.
( <
, , ,
?. Z ?
<
<
.
$%&" '" !
FU<
?
- , D? QD<
- , .
( <
H
- <
H
, G < (.1). $
< < H
,
< ,
D? <
#8( H. 5
< ) (
%
) << <
< [1].
=
%
D?< , < ¶- ¶-,
D?
< < 7 < .
5
< 5 <
< < 2,6
%
%
,
< <
. " 7
%
2,5 [2,3].
297
1 - < < < 1-10 ;
2 - G<
%<
< UG<
< 40 <3
3 - G<
H
< UG<
< 20
<3
4 - H
(, < < 50<<);
5 - <
;
6 - 7;
7 - 7 <;
8 - 7 < ;
9 - %;
10 - 7 < <
'
1 - 5< H << <
H
()!" !
5
< G <
t=-18°5. &<
<D <
0,5 – 1,5 <<, 2-3 <<. " %<
, 7 1:2 1:1 < t=20±2°5.
F
U
< <:
<
< %< , 3%-< -
< < %< .
( H%%
< 5 <
D D ? (. 11).
) ;
) ;
298
) '
11 – ( H ? < 5
7 < ? < 5 H 40 - 45 <. H 3%- %< . $
7 H , .. H
H D ? ?. '
% H <
< H
? 2.
) ;
299
) ;
) '
2 – &<
? < 5 H
H
.
% , < 7
H%%
#8( <
H, H
< << H #8( < – 0,72±0,05 8; – 0,84±0,05 8; –
0,68±0,03 8. !
, < 7 H
,
< < <<
H%%.
""
$
< H
<
< H
D? : < ? <<
, 66,1±4,2% 300
, – 57,3±3,8%, – 48,1±2,1%. F
? <.
( <
H #8( <
H : 45,54±1,15%, ?
28,75±1,45%, 92,8±3,2%, < 71,08±2,45%, 80,3±2,2%
< 51,2±2,4%, < 5 – 94,2±1,1% —-
93,2±1,0%.
( H <
? 47,03 58,12% . ( H 80,1%, 59,3%, 80,4% 64,6%, <
5 – 94,8% – 82,6% <
. ( H 7 < 87,2%, 85,1%, 93,6% %
%
92,2%, < 5 - 95,2% < ) –
87,1%.
( H , < <
< ,
<
22,3 /100 , H , %<
H
,
D
<
38,2 /100.
( H <
18,7 /100 ., %<
H
- 28,7 /100 ., H
12,4 /100 , 19,2 /100 .
+%!-/0 3
1.
' (.$. '
<
< , <
<
D G <
<7
/ $
. (.$. ', 8.. 5. – /.: (†. – 1975. – Q.
Z ? : !.-. $
/ (.=.
2.
$
, (.8. $
<
, Q.. G, /.(. $<
. 6- .,
. . : 5. !. -
, 2004.- 226 .
Z . : !.-. $
/
3.
(.=. $
, (.8. $
<
, Q.. G, /.(. $<
. 6-
., . . : 5. !. -
, 2004.- 407 .
301
=8 664.84.002.611
= 7` 7 73 ..*, 5# .., ( .., + 8..
34&! (6& « " #
"», , e-mail: [email protected]
*%, " # <
? < .
5
DD < <D 7 , <
, ?
, .
FORMULATION QUICK VEGETABLE MIXTURES BASED ON YACON
Khripko I.A.*, Kozhukhova M.A., Revin A.P., Beresneva Y.N.
FGBOU VPO «Kuban State Technological University» Russia,
e-mail: [email protected]
*Corresponding person
bstract
Were developed frozen vegetable mixes based yakon. According to the tasting
commission of these types of products are good in flavor, attractive packaging and
recommended for production as products, both general and special purpose.
F< <7
< , ? <7D
- ?.
_
– , D
'
[1-4].
_
(Polymnia sonchifolia) – H
<
, < <. '
< T
`
8<.
F
$, 8, <,
5‹8, =, , < , _
, . [1-4].
' <
, 1 2- <
. 5 , G, < <. / G<
-G, <
< <, 7G. ( < < 0°5 D . ' %
<D 302
?, D < . < 10, 40 <, < – 800-900 [5].
( < 7 . Z
, , 7< <
. F <
, < %
– (
20%). ( 7, < <, 7< < . < , %
, D
, < < ?. $ H
< <
, 7 < ?.
_
D
,
D?
< <; 7 << < .
Z%%< < ?
– <
.
$%&" '" !
% <
- «#
<
?
< ».
$
<
< ? <<
,
7< < <
.
? < , , < 7 %D .
#< - (. Abelmoschus esculentus, %
. Hibiscus esculentus) — , 8<
7
(Abelmoschus) < =
, ? .
$
< - <
< < G
%
<, <D? G
, < <.
! < D 25 <.
#< < ?<, < < <<. ( < 20 % <, <D?
. 5 < < ?<, <
, , , <
<
.
()!" !
< <
<
(<
, %
, 7, , ) <
? , < , < , <
303
%
, D, <.
( < <
< , D?
<
?, %
<D , ?
, .
$ :
- D ?D D ;
- < < ? -%
D
,
,
< .
< - H
, <
D
() , <
U
. *< 7 < , < 7 < < , , D , <
<
<
?
[6,[email protected]
<
H
<
D,
D?
D, , D?
< << <, <
7D?
.
" %
<
, <
G ?
D, < << <. " <
< D? : <
,
, 7, <, %
?,
. Z<
< 7
?, D? <, D D.
' ? < 1,2,3,4.
304
'
1 – ' < R1
'
2 – ' < R2
'
3 – ' < R3
'
4 – ' < R4
F
?
<
<, <
< < <, ? %
<
Q! ().
Q- "
<
<
!#"%#! "+-5
$ D
( (<
&
'F
F
? <
l,
%)
'*
"#,!,)#!
5
4
4
4
5
3
4
5
4
4
5
4
5
5
5
4
5
4
5
5
5
4
5
5
305
( 4
4
5
5
F
?
3
4
4
5
4
4
4
4
""
5
DD <, <
<
<D
7
,
<
?
, .
<.
+%!-/0 3
1.
QD .#. _
. .- =.: ", 2005.- 64 .
.. F <
2.
'
//
III
=
%
«
/ »: =.- $,
2000; Q. 1, 5. 126-127.
$.., (.. 5
<
3.
// V =
<
< «
»: =. =., 2003; Q.2. - 5. 70-72.
T #.., QDD
8..E< 4.
<
. 5
. =.:
'
<, 1996.
=.8., =
).$., .8., 5<
8..
5.
Q
< ?
$?. Z
. : < V <
D
–
%, ?
20-D .
, 2008.5.74-76
6.
Howlett, J., & Ashwell, M. Glycemic response and health: Summary of a
workshop// American Journal of Clinical Nutrition, 2008, 87(1), 212S-216S.
7.
Aston, L. M., Gambell, J. M., Lee, D. M., Bryant, S. P., & Jebb, S. A.
Determination of the glycaemic index of various staple carbohydrate-rich foods in the
UK diet// European Journal of Clinical Nutrition, 2008, 62(2), 279-285.
306
=8 620.92:621.565.58
< 77
7 8 7 `
<
..*, +% (.X.
‚ " X "
. # W-4", !, e-mail: [email protected]
*%, " '
<
% <
-
<
<
%
H <, , <. $
H< <
% < < H%%
.
SOLAR WITH MULTICHANNEL ABSORBER LIFE SUPPORT SYSTEMS
Danko V.P., Bobrovskyi R.
Donetsk National University of Economy and Trade named after Mykhaylo TuganBaranovsky, Ukraine, e-mail: [email protected]
*Corresponding person
Abstract
New modification of liquid-metal-polymer solar collector for solar heating and
for creation of multifunctional energy systems on its basis, particularly solar
refrigeration systems was developed. A comparative study of several modifications of
polymer collectors involving data of a set of foreign researchers was made and high
efficiency of the new elaboration was proven.
'
<
% <
-
<
<
%
H <, , <. $
H< <
% < < H%%
.
(
<
< <
(5) < <
%<-
. 5? 7
307
<
, <
5: – , <<,
, %
, H%
, <, <
%
<, , , <
,
.. "
5 < <<. # <
5 < <
. $
<< << 5; <
5 <, H
< «» 5 <
<.
$%&" '" !
Q
H< <
5 <
<, < <
<
[1]. %
< 5
. 18. , 5 H%%
Fc , D? 7
<
?D? 5
D?< D D?< . ( F' <<
<
5 <
%
<:
Fc
1
b ˜U
b
S ˜ D ˜D æ
D (b D ) ˜ F
,
(1)
b – < < <, <; D
– H < , <; D – H%%
, (/(<2˜), (
<D D | 300 , | 1500 ); F – H%%
<
% ( <
< D G, << F =
1). H%% 5 <
%
<:
K W ˜ H ˜ F c U ˜ F c ˜ ª¬0.5 ˜ tæ tæ
1
1
2
t º¼
0
J
(2)
t 1 – < 5, q5; tæ 2 – <
5, q5. ) U Fc = const, <
ƒ0
<D D. (
ª«¬0,5u tæ 1tæ 2 -t0 º»¼ J
tæ 1tæ 2 t0 º»¼
ª
«¬ 0,5˜
J
<
Q$'. E
308
< 5 < <
¸5 <, :
¸5 = f(Q$'), ¹5 = Q/IF5 ; Q$' = [0.5(tf1 + tf2) – t0]/J(3)
( [2] <,
< 5 <. ( ?
6 << (
) <
5. < D <
. ( <
(University of Cambridge) D
% (Stellenbosch
University) [3] H<
<
, < <
«plastic microcapillary films»
MCF. Z
< <
< <
<
< , . $
MCF < , ? 30-500 <<., 7 ? ? («
») 11% 60%.
F
< < < 5, , <
, , <. 5. F
H
7 : <
-
< 5/=-$,
< <
, < $$; <
<
< <
5 D << ?
.
()!" !
5? 7
<
, <
5: ,
<<, , %
, H%
,
<, <
% <, ,
, <
, . "
5 <. $ < <
<
D?< <: << < 75%; <
(
<
) –15 +150¼5; < D %
<
D (!). 8 $= , 7 <
309
%
<. $
< - ,
%
H%
!, <D 7
< D D <. 8<
% < <
<, !. 8 D !, < 90¼5.
( < $$ < , (. D
< 2010 [4]. '
? D < $$.
# H<
<
D? 5/$ < < < <
: $ < 7< < <
< $ ( RR5-6); < 5/$ %
<:
«
-
-
7 -
»; $ < 7< < < < $1,
$1 $2 ( RR 7-8); <
5$
< 7< < ?
(
5/$ RR 1-4).
D, [4] ? $$ (10 << ) 7
(11 <<). (7 [4] 7 $$. $
< H
7 <
D $$. $
H
< %
<: l ¾ 2-4 h, l = 6-10 <<.
( [3] <
<
7
, , <
?D <. F? 7
<
, ¾ 60<<., H
< <
<
, <
%
< , < %
< ¾
10<<. < (
3 6 <<.) < (
3 12 <<.). (
<. F? %
<
7
. F <
<
D ($$ 7
).
$ %
< <
-
< 5/=-$ D? < H<
. 2. # 5/=-$, < < < <, . '<
310
<
$$ 7 < < [4]. Z< ? < % , , < <
< <
, D?< < < <
, 5.
""
1. ( <, <D? <
?< <
H< H%%
5 < <
, 7< ;
2. 7 , , < <D
<
< [4]; ? %
< «
- 7 » ; < <
D ($$ 7
);
3. $
<
-
< 5/=-$ <
7
H, 7<
5/$ [4] (
<
R2 . 2.5 <<
?
); H
7 , ? <
<< 7 <
< < <
< <;
4. 5/=-$
7 H%%
, D ?,
<
.
+%!-/0 3
1. Martinopoulos G. at al., CFD modeling of a polymer solar collector. Renewable
Energy 35 (2010) p. 1499-1508.
2. Sandnes B., Rekstad J. A Photovoltaic/Thermal (PV/T) collector with a polymer
absorber plate. Experimental study and analytical model. Solar Energy. 72, R1
(2002) p. 63-73
3. Ghoneim A.A., Performance optimization of solar collector equipped with
different arrangements of square-celled honeycomb. Int. J. of Thermal Science. 44
(2005) p. 95-105.
4. D (.(. Q
< /
(.(. D, 8.(. "
7
// E
^ ^. - 2010.
- R4. - 5. 54-59.
311
8 6.
8=
8
312
=8 664.1.048
9;; 8
8
..* 1, .$.2
1
34&! (6& « " # "»,
, -mail: [email protected]
2
! -" # #$" #$"# , * %, " ( <
. !
, 7 <
KEBO DS (<), 5-10
('
) 'olystabil VZK (<).
COMPARATIVE PERFORMANCE EVALUATION OF
EVAPORAITION OF DESCALINQ JUICE SUGAR INDUSTRY
Savostin A.V.*1, Gorodecky V.$.2
1
Kuban state technological University, Russia
-mail: [email protected]
2
Krasnodar Research Institute of Storage and Processing of Agricultural Products of
Russian academy of agricultural products, Russia
* Corresponding person
Abstract
The article presents the results of a comprehensive study on the impact antiscale
scale formation and quality syrup by evaporation juice sugar production. Found that
the best and showed similar results preparations KEBO DS (Germany), C-10
(Russia) and Rolystabil VZK (Germany).
$ , D ,
. $ H
< , , D %
<- <
, 7 , D , 7 < . ( H<,
313
« ».
( ? < <D , < < «
» [1]. '
D < . F
H%%
. $
H
< <
D < <7
.
$%&" '" !
FU< ? %%
, ? . "
<, < : 5-10 ('
), Polystabil VZK (<),
DEFOSCALE VZK (<) KEBO DS (<). ( H , D <
.
" <
[2,3]:
– <
D D – <<,
– <
D D ? – %
<<,
– –%
<<,
– – <
<<
()!" !
$ <
<
< 2012 1
Q 1 – 8, < < < = 5 5-10
(
, "
, , Q<7,
!-/, /, ,
Polystabil VZK
,Q
DEFOSCALE VZK
, Q
, KEBO DS
!
F
< 2.
Q 2 –F
=
5-10
=
?, %
40
314
$
,
/<3
1,266
7,0
Polystabil VZK
DEFOSCALE VZK
KEBO DS
40
45
35
1,266
1,309
1,172
7.0
7,0
4,0
$ <
, D < ?<
, . D <, H
<
H
<
<
. #
, D
H%% < D.
"7 D? <
.
F? %%
2500
<3 5 <
500 <3, 0,002 % < (
10 <) D?< <.
< :
R 1 5
+ 5-10
R 2 5
+ 'olystabil VZK
R 3 5
+ DEFOSCALE VZK
R 4 5
+ KEBO DS
R 5 5
(
))
$
%
, H
< %. < 20 05 . $ H
< < : ,
, <
D D ?, <
D D , <
D
D . 5, ,
< 7. &< 7 <
< <
<
Q
< #.
,
<<< , H%% <<<
<<< ? , H%% D.
! 3.
Q 3– ' $
F? =
?, %
=
, %
*
, %
=
, %
5
, <
T
, ..
12,5
11,40
91,20
0,010
52,5
9,05
25,90
315
=
?, %
=
, %
*
, %
T
, ..
< , % D
5
%, <3/<2*<
< %
. % D
=
, %
5
, <
= , <
= , <
Z%% , %
Z%% , < <
?
Z%% , % D
Z%% , < <
?
R1
44,2
40,00
90,95
8,68
41,95
+9,87
5
, <
R2
R3
R4
44,2
44,2
44,2
40,20
40,10
40.00
90,72
90,50
90,50
8,68
8,70
8,72
41,95
39,96
38,93
+9,87
+4,66
+1,96
R5
44,2
40,00
90,50
8,71
38,18
-
10,41
- 10,1
13,16
+13,64
6,75
-41,70
13,16
+13,64
11,58
-
0,0049
7,27
3,45
41,78
0,0047
6,97
3,15
42,38
0,0047
6,98
4,30
41,22
0,0050
7,42
4,10
40,98
0,0040
5,93
21,10
25.47
79,58
80,72
78,51
78,06
48,51
10,45
10,60
9,16
11,70
-
83,65
85,07
79,62
80,56
-
4,41
4,49
3,73
4,86
-
""
8 D? :
- D 7D ,
- 7 D? D <<< ? KEBO DS,
<7 - DEFOSCALE VZK,
- 7< H%%
< <
<<< ? KEBO DS, <7< - DEFOSCALE VZK,
- % ?
DEFOSCALE VZK,
- 7 <7 KEBO DS.
Q< <, <
H%%
, 7 <
KEBO DS,
5-10 'olystabil VZK, H
< 7 .
316
+%!-/0 3
1.5
8.'. Q
. – =.: , 1998. – 495 .
2.#
.. Q
< . =.:
8
<, 1989. – 230 .
3.* /.5., $
8.$., .5. Q
< - – %. - =.: , 1995.-327.
317
=8.664.121
< 8
, ` < c, < 8 8=
.
.*, .$., .., ! ..,
'# .$., [' .
.
! -" # #$" #$"# , -mail:[email protected]
*%, " (
< < <
, H
< < <.
$
< < (2, 5, 10 %) <7 D
, <<
(2 % <) < <
< .
5?
<7 <
<
14,4 % 3,6 % <
, < 1,92
4,1 % .
THE INFLUENCE OF TECHNOLOGICAL CHARACTERISTICS OF
SUGAR BEET ROOTS INFECTED IN DIFFERENT DEGREES BY ROT ON
THE QUALITY AND PRODUCT YIELD
Daisheva N.M.,* Gorodecky V.O., Gorodeckaya A.D., Kotlyarevskaya N.I.,
Semenikhin S.O., Usmanov M.M.
Krasnodar Research Institute of Storage and Processing of Agricultural
Products of Russian academy of agricultural products, Russia
-mail:[email protected]
*Corresponding person
Abstract
Sugar yield depends primarily on the quality of processed raw material,
therefore special attention should be given to the technological quality of sugar beet.
Comparative assessment of the quality of raw material with high technological
advantages and beet roots with dosed content (2, 5, 10 %) of rotten and necrotic
318
tissue showed that even minimal (2 % by mass) amount of non-conditioned raw
material in the composition of processed beet roots significantly reduces the quality
of the obtaining intermediate products. Expected sugar yield varies considerably
depending on the quality of raw material: it falls from 14,4 % to 3,6 % during joint
processing of healthy and non-conditioned roots, also sugar content in molasses
increased from 1,92 to 4,1 % accordingly.
` '
,
< '
, U << <. ( , < <
39-41 05 25-30 %, < - 63-67 05, < .
$
< <
-
< D D < , : - < < < .
$
D U, < . E<
<
D? ?D D , .
" %
<
, , , . $
H
< D , < <
<
. $
< %<
D , (%%
, .). <
<
, ? <D
D < D < %
<. (
< <
.
( H
7D , D D . $ < <
[1].
$%&" '" !
*
< < 7D < ( <7 D D). $
< (98 , 95 , 90 ) 319
D?
(2 , 5 , 10 ). " <
<
< D 7. 7
7 , ?
<7. 5 ,
, /<3; <
, % < ;
<
, % < ; (<
), % < ; ? (5(), % < ; D? ? ('(), % < ; , %; , %, < : ?
, , <
<<
.
, %%
? <
$.=. 5 < ? (5(), %; (5), %; (*), %; ; D? ? ( '(), %; , %, <
: ?
, , <
-<<
, , < ?, </, < : , , < ;
(5), % < .
8 « <
-
<
D », , 1983.
' D? ? ('() ,
< <
<7 D 1.
Q 1- 8 %%
< 7
5
&
5
, %
11,7
'(,
%
0,57
5- '(,
, %
%
3,1
10,6
"%%
(100 +100 =6,0, £=60 <., t0=60 05)
R
1.
2.
3.
4.
5.
5
5(,
%
5,
%
*,
%
'(,
%
&
(100 )
.
(100 )
&
(98 )
+ .
(2 )
&
(95 )
+ .
(5 )
&
(90 )
+ .
(10 )
12,0
10,55
87,92
0,29
16,0
4,80
30,0
9,26
11,9
9,80
82,35
1,87
12,4
9,60
77,42
2,41
12,4
9,20
74,19
3,00
, ? %%
< , <
< ,
320
7, < . Z
<, < < D < < D?< < -
, 30-40 %.
Q <, < D? < < .
$
< =.&. E<
[2], < , ? , 5 10-15 %, 10 - 25 %.
5 H
< D 0,15-0,18 % <
. F
, ` '
.
()!" !
' < < <
, : (
<
), %%
?
<
%. 5 $.=.,
2, 3. ( , ? 1,5 7, < , – 2 <7. !<7 < , <
, D? ? <7 < 60 . 5?
D % : , <
<
. ( ?
7 < , %%
?
. ( , 37,2 % ( 2), %%
– 41,2 %
( 2): H D? %
7
<< [3], < ?
, 45,2 %, <7,
< %%
, .
5
D? ? ?
< , < <7 , 1,87 % < ( 3) 70 7 <
(
$.=.5 – 0,02-0,03 % <
) 300 – < 0,006 % ( 3). (
?
< , 0,044 0,75 % 5F < , <7 , ( 3). ( < < 7
3 , D?: , , < 7 . $
7< ?
, .
321
! ., /<3
<
, %
!<
, %
5
? (5(), %
5
(5), %
*
(*), %
5
.
? ('(), %
5
, %
5
, %:
?
;
;
<.-<<.;
(-<.)
$
< , % <..
$
<
<, %
<
37,5
9,85
-
6,47
1,650
0,428
0,252
0,035
0,217
3,6
4,1
26,1
17,75
-
0,097
1,090
0,222
0,126
0,015
0,111
14,4
1,92
1,07
6,25
5,25
(2)
1,19
14,32
3,75
&
(1)
2,41
13,2
0,29
16,20
28,4
2,84
12,6
0,85
15,70
30,1
3,12
11,8
1,48
13,95
32,2
$
7D (1) + (2)
(98%+2%)
.
*
*
(
2 .) .
5
322
19,30
88,1
6,56
21,9
&
11,30
37,2
5,97
30,4
19,25
83,0
6,40
23,2
19,65
80,3
6,31
24,5
20,30
78,1
6,20
26,0
7D (98+2)
*
. *
2 .
.
& < +$! 2 – "5)$! w,)% ,%$",&-/ ! '"$lw&* '"$l'-"l)"%
0,018
15,10
89,3
6,55
16,9
0,40
7,5
41,2
6,48
18,2
0,64
10,80
81,8
6,44
13,2
0,20
10,10
71,1
6,12
14,2
"%%
(t=7005, £=1 , =6,1)
.
.
.
.
- 5
D? ?
('(), %
5
, %
5
, </:
<
5
, %:
?
;
;
<.-<<.;
(-<.)
5
- 5, %
5
? (5(), %
5
(5),%
*
(*), %
<
6,02
6,42
0,26
4,35
24,2
11,30
87,0
6,48
18,0
13,0
&
* 2 0,08
6,50
10,9
83,8
13,0
98+2
0,40
6,48
10,7
81,1
13,2
0,64
6,44
10,1
78,9
12,8
95+5 90+10
0,20
6,42
0,61
6,40
10,30
79,23
13,0
0,82
6,37
10,3
76,9
13,4
* 95+5
90+10
323
10,80
81,8
13,2
98+2
0,34
0,72
6,31
77,9
6,38
10,6
80,2
13,6
10,1
12,6
0,87
6,27
10,35
76,1
13,6
* 2 98+2
95+5 90+10
& < "%%
(t=7005, £=1 , =6,1)
5
7 + 1,87
1,555
744,58
151,98
51,89
3303,07
0,251
0,211
0,015
0,196
0,75
0,542
367,37
121,74
9,21
462,22
0,110
0,090
0,012
0,078
0,044
7,38
5,60
45,2
12,4
0,092
0,029
7,65
12,70
85,8
14,8
0,28
0,19
7,8
11,75
83,9
14,0
0,36
0,41
6,27
10,90
82,6
13,2
F? $.=.5
7D (98%+2%)
.
*
*
2 0,006
7,5
14,05
92,4
15,2
&
Q 3 – ( ?
""
, 7
(
2 % < ) <
< < <
< .
5?
<7 < 14,4 3,6 % , < 1,92 4,1 % .
$
H
< D D , <7 <<
<
< .
+%!-/0 3
1. * /.. =
D .
- =. : «5», 2007. - R2. - 5.21-27.
2. E< =.&. Q
. - =. : $?
<7
, 1967.- 470 .
3. ‹< (.5. $
-H
< / (.5. ‹<, 8.'. 5
, =.5. †
// †
«5 <7
», 1985. - R11. - 5.38-40.
324
=8.664.121
< 7, =7
= =;, < 8=
=" ..*, .., .
., ! ..,
[' .
.
! -" # #$" #$"# , -mail:[email protected]
*%, " ( , , %
<
%
< («<») <
< < D 7 .
THE INFLUENCE OF SEED MATERIAL USED IN BOILING OF
MASSECUITE ON QUALITY OF FINISHED PRODUCT
Lyusy I.N.*, Gorodeckaya A.D., Daisheva N.M., Kotlyarevskaya N.I.,
Usmanov M.M.
Krasnodar Research Institute of Storage and Processing of Agricultural
Products of Russian academy of agricultural products, Russia
-mail:[email protected]
*Corresponding person
Abstract
This article represents the results of scientific researches that showed which
role in formation of crystal-structure of massecuites the using of special seed material
or fragments of sugar crystals ("flour") plays in obtaining of sugar with good
consumer quality in case of increasing its competitiveness.
( D 7< <, <
7
< < %
<
%, < 7<
< , << , 7< 7
< < .
Q, , < << - 325
< 2,7 8,3 . 7., 1,8 5,8 . 7.,
<
-. T
70 104 . ICUMSA <
– 60 . ICUMSA.
5 < H <, , %
<
%,
< , <
«<».
$%&" '" !
D?< <: ? <
< – <
– <
%
<
7 <
%
< (
< ), ? ? (
H%% ? 1,05-1,20 – < ). ( <
?< <
, < <
<D? .
()!" !
$
%
<
<, :
x D
%
7
. < , < <<
? D. Z D < <;
x , ? ?
< ,
%
<
<, < <;
x <, %
<
7 < < D, < %
7;
x , <D? D 7 %<
(<, <, <) , D D , %
.
D %
< ? <
, , 7 , ? %
<. $
, <
D 7 %
, ,
, , ?, , %
.
?D. ' 7 D < [1, 2].
326
-
, D? , D, D < , ó7 D . Q?
, H
, <
<, . , , < .
< , . '
D D D 7 < <D , 7< %<.
( D <, <
. 8 ? , %
<
7 67,6 . ICUMSA, , ? , – 83,2 . ICUMSA, – 156 . ICUMSA.
D %
-< - (? << <
D?
<
) , D? . ( H<
< %
<D
<
?D .
!, <
7 ,
? , 1,8-2 <7, < <, %
<
7 , 6-6,5 <7.
5 <, , ? , 7, < , <.
""
, < 7 ?
<
, < 7 , , 7 .
$ , , , <
% (< 0,2-0,5 <<) 7.
$
H
< 7 <
<
H%% : «» % , <
%
, <:
D
(
, < «
», <
), D D (&=F, 555-'), <<. ( <
<, <–
< %
-<
327
, , < : , %
<
< <
[3, 4].
&
< <7 %, 7 -
,
< <-
D? < , <7 %
, H%% % %, < < < <
<< .
+%!-/0 3
1. 5 $.=. Q
: , . - =. : . $? <7
, 1967. - 624 .
2. <
8.8. .. - .: -
«
<» 1965.
- 315 .
3. 5 8.8. . / 8.8.5,
(..Q. - =. : TQZ?
< (
), 1975. - 28 .
4. 5 8.8. $ 7 - /
8.8. 5, 8.'. 5
//=
, 1988. - R6. - . 75-80.
328
=8 577.114.5:577.114.083
7 ;7
7
< `7
<7 787
1* .., "2 .., 1 .8.,
[email protected] .., !%1 .
.
1
! ( -" "
"'/ /, , e-mail: [email protected]
2
34&! (6& «
" " " .(. %"», * >", " <
%<
< < < <
<
%< , << < Penicillium Trichoderma, D <
%<
. " <
%<
D
, <
.
$
? H: < <
<
, %< <
<, %<
%<
<. ' D H%%
<
D %<
(H%%
<
%<
32,79% D? 98,80%). F %<
D?
<
,
? <
.
TOWARD TO SUGAR BEET PROTOPECTIN FRAGMENTATION
BY BIOTECHNOLOGICAL METHODS
Kondratenko1* V.V., Sinitsyn2 A.P., Kondratenko1 T.Yu.,
Kiseleva1 L.V., Alabina1 N.M.
1
Russian Research Institute of Canning and Vegetable-Drying Industry, Russia,
e-mail: [email protected]
2
M.V. Lomonosov’s Moscow State University, Russia
*Corresponding person
329
Abstract
The possibility of sugar beet protopectin directional fragmentation using the
homoenzyme samples, secreted by Penicillium and Trichoderma fungi, in order to
obtain the homogalacturonan fragments is investigated. For this purpose the cellulase,
xylanase and rhamnogalacturonase homoenzyme samples were used. Extraction
process was carried out in four stages: washing the water-soluble components of raw
materials, pre-enzymatic treatment the nonpectic polysaccharide components of
biomass, a two-step enzymatic fragmentation of protopectin. The study results
showed a rather high efficiency of the approach used when pretreatment of cellulase
enzymes was going (extraction efficiency of homogalacturonan fragments was
32.79%, while uronic part was 98.80%). Absence of biomass nonpectic components
pre-enzymatic treatment contributed to the transition to final samples the nonuronic
branches linked to main uronic chain by non-rhamnose residues.
( ? < '
<
<7
31 <. .
< G. $ H
< 11 <. . ,
D
<
<<
G
D?<
<,
GD
H
D? . ( < <
< <
<, , , D D <
?
, <
, %D<
-
<
<7
, %
< [1, 2]. F< <
D ? – , < <
<
< D D(+)-
, G  (1¿4)-
< <. (
< < ? < < %
<< – <
- <
<. $ %
<
<?
-D(+)-
, < D , [3, 4]. ? < D < <
%
– <
, ó7D D <
%
<
? D <
< [4, 5, 6]. ( H
7D
<
%<
?, ?
D %
D . <
< <
<
<
< < <
%<
[7]. H
, ?G D? 7.
7 ? 7
? <, , 330
[8, 9, 10], 7 – <
%<
< < –
7D < , -% <
%< , <
%< , D? <
%
<
< (
1) [11, 12, 13, 14].
'
1 – =< <
%< D
< <
%<
?, $%&" '" !
( U <
&8F «! » (. !
, ! ,
).
<
%< 7<<
<
Penicillium
canescens
(%<
<
<
), Penicillium verruculosum (%<
< D
) Trichoderma longibrachiatum (%<
< ) <
<
%
<
H<
=! <. =.(. /
<
.
<
? ($() <
H: 1) H
<
D? <
% $(;
2) ; 3) <
<
<
<
<
<; 4) 331
< <
< < < <. Z ? G
: , %<
<
,
%<
<
D
. 3 4 H ?
.
" %< < 7D
<
< 30 < H (-211, Hanna) < ? (%
< !'/-1). H < <
< < < < 30 < H ($().
Z, 3 4 H, D D? , < %
< 4,7, %
30 < 7500
/<. 5 D ?, %
20 < 7500
/<. (
, <.
5
$( H H<
<<
5-<
<
<.
!
D
D?D $( <<
<
< [15].
()!" !
8 H< , H
?
< %< < D
(
2). F %<
<
150 < <
Ca2+ / Mg2+ %< <. <
< D
-<.
Q H<
, %<
<
<
% <
< <, %<
< G G < H%%
, < , < %<
<
D
(
3). $
, H
<< <
<
<
D?
< . H
< H
< H.
$ 7 < <
%<< <
<
G <
D
< <D
< << <
%
<, D? 332
G
%, <
< %<
< (
4).
'
2 – "< H G< <
? H <
< , <
H%%
%<
<
< D< 7 <
%<
, ( 1).
333
'
3 – "< H ? %<
< <
'
4 – "< H ? %<
< <
D? $(, , < 334
, < ,
<
.
Q 1 – $
H%%
%<
< <
$
"
? ,
77 H, %
F? H%%
%<
<
, %
!
D?
, %
"
<
%<
<
<
, %
( D
84,45
85,62
96,31
45,22
26,62
33,19
56,09
97,10
98,80
25,36
22,94
32,79
""
F? H< <
<
< <
?D <
% %< < <
? .
+%!-/0 3
1. (.(. F
%
?, < < / (.(. , .8. ,
'.. ‹
// -
: (
- %. – !:
'85E, 2012. – 5.110-113.
2. Oosterveld A. Pectic substances from sugar beet pulp: structural features,
enzymatic modification, and gel formation / Proefschrift. – Wageningen: 1997. – 150
pp.
3. Marry M. et al. Extraction of pectic polysaccharides from sugar-beet cell walls //
J. Sci. Food Agric. – 2000. – V.80. – P.17-28.
4. Vincken J. et al. If Homogalacturonan Were a Side Chain of
Rhamnogalacturonan I. Implications for Cell Wall Architecture // Plant Physiol. –
2003. – V.132. – Issue 4. – P.1781–1789.
5. (.(. 5
%
?
/ (.(. , Q.`. // 7
. $? . – : Q!, 2012. – R4. –
5.41-43.
335
6. Q.`. F %
? / Q.`. , (.(.
// 5
(
, <
. –
: (QQ, 2012. – R 180. – 5. 420-424.
7. (.(. F <
< < ?< / (.(. , Q.`.
// . – =
: =Q!, 2011. – R2. – 5.20-26.
8. (.(. F< ?
/ (.(. , Q.`. // . – =
: =Q!, 2011. – R3. – C.31-39.
9. (.(. % %
, D? ? / (.(. , .8. ,
Q.`. // 7 . $?
. – : Q!, 2012. – R4. – 5.112-115.
10. 5
".'. F < ? G
/ ".'. 5
, 8.5. "
, /.. ‹
,
8.. F
, (.(. // 7 .
$? . – : Q!, 2013. – R1. – 5.109-113.
11. 5 8.$. $
H%% %< <
D <D 7<< Penicillium verruculosum / 8.$. 5, ".F. F
, 8.=. '
,
).(. #7, .5. "
, F.8. 5, ).. , .. &
,
F.. F, (.8. <7
, (.`. =, 8.(. 7 // #
. –
=.: 5$=, 2013. – R5. – 5.40-53.
12. Bushina E.V. Development of complex enzymatic preparations of pactinases and
celulases for sugar beet marc digestion / E.V. Bushina, A.P. Sinitsyn,
A.M. Rozhkova, I.N. Zorov, A.D. Satrutdinov, A.O. Bekkarevich, A.V. Koshelev,
O.N. Okunev // Applied Biochemistry and Microbiology. – 2012. – V.48. – R5. –
P.493-499.
13. *7 8.(. C H%%
< %< Trichoderma Penicillium verruculosum / 8.(.
*7, .5. "
, 8.$. 5 // <7
. – =.:
, 2012. – R6. – 5.68-76.
14. #7 ).(. 5
< %< D < / ).(. #7, 8.=. '
,
.. &
, 8.". 5
, 8.F. #, 8.(. 7, F.. F,
8.$. 5 // $ < <
. – =.: 8 $$T
'8 , 2012. – Q.48. – R5. – 5.543.
15. 5
5.(. H
<<
<
< / 5.(. 5
, 8./. /, (.(. , (.(.
// 5
<
% . – (
:
(!, 2004. – R 4. – (. 2. – 5.217-225.
336
=8 664.162.065/66.065
=< 88 c
`8 =; .(., 7 ..*, !) $.., ! ..
! ()) #" #$
, e-mail: [email protected]
* >", " $
<
D
< , H%%
«
» < , ? – . F
3-5 <, «<
» % . $ H
< ?
, 7 % 7 . $
? <
.
CRYSTALLIZATION OF ANHYDROUS GLUCOSE
IN POLYTHERMAL CONDITIONS
Andreev N.R., Khvorova L.S.*, Selezneva O.S., Kotlyarov G.S.
All-Russian Research Institute for Starch Products
Russia, e-mail: [email protected]
*Corresponding person
Abstract
Combined method of anhydrous glucose crystallization in polythermal
conditions was proposed, its efficiency is achieved by stage of crystal formation in
vapour apparatus, and process of crystal growing – in crystallizer. Formation of
required amount of crystals is carried out in 3-5 min, after their strengthening fresh
massecuite is unloaded to crystallizer. At that the duration of crystallization is
decreased, the yield of crystals from massecuite is increased and the quality is
improved. Process is carried out by domestic equipment.
D D D
D <
7 50 05 ? D
< < <:
< % <- < % < < .
337
$ % <- 7 (
) , 3-5 <, D <. $
? 6-8 < 70-72 05. < <
<-
%
< D?< [1, 2].
Q
< % < < % . < 7 . $
D
< % #
< 7 ? < % [3]. $ H
< D
D
<
H
< (Z) 97-98 % 5( 82-83 % D . &
7 < < 82-84 05
< <
5-6 05 7 5 < 0,5 / <2. $ H
<
< < 4-6 05, <
7 2 . "7 16 82 60 05. 76
% 5(.
$ < D <
?D 25 %-
2 / 1 <3 . 8
7
30 < . "
< % 84 50 05 [4].
< , , 7 , - D < ,
.. H
< < < <
, 7.
7<
7
%
, D
. (<, <
,
?D
2-4 , D? <
. 5?< < 5( (82-83 %) %, .
()!" !
" < <
D
< [7],
H%%
«
»
338
< , ? – (<. ).
? < % < <
<
< <- (0-3 )
(3-14 )
«&
» 82-83 % 10-15 D
. F
3-5 <, «<
» % < ( D 7) . #
< < < 7 <D < %
<, . Z
[1, 5, 6].
""
$<? <
DD D?<:
- «
» ? < <
< , H
< <- ;
- «
» < 3-5 <, (
2 ) . D D
;
- <
«
» < <
1-3 7 5( % 84-85 %, 339
< 5-10 % D <
< % ;
- ? % , 7 20-30 %
7 ;
- <
, ? ? <
.
$< D,
, %, 7 .
+%!-/0 3
1. 8 .'., E
/.5. 8 D
: < // <. – 2012. – R 3. – 5. 43-45
2. E
/.5. - D
. – =: '
<, 2013. – 270 .
3. 5
5
. =
D
// 85 R 15427, #
, . 07.05.70, . 03.05.74
4. ._., ‹
8.., < /.(. $
D
// Q'5 «$? <7
». – 1978. – 5. 5. –
R 1. – 5. 13-16
5. E
/.5., #
).., 5 (._. . $
<
D
// %. . «$
<7 D <7
». – =.:
8
QZ$$, 1990. – (.6. – 5.17-21
6. 8 .'., E
/.5., &
.. 7
D
< // 5. – 2010. – R12
7. 8 .'., E
/.5., 5 F.5. 5
D
// $
7 R 2012158069, =$ 5131/10, 25.12.2012; . 02.04.2014
340
=8 664.1.001.25
7;< 8=
- .., !"# .*, #!0 ..
! )) # /, -mail: [email protected]
* %, " $
H< 3 ? <
%
< <
7
D, <
<
-<
< “(-5”. , %
< ?
. F
5-
7. (
, < < , 5 < 7. !
?
, ? 30 % <
. F
<
< % -
<.
ESTIMATION OF CONSUMER PROPERTIES OF SEMICRYSTALLINE
SUGAR PRODUCTS
Egorova M.I., Milykh A.A. *, Mihailichenko M.S.
GNU Russian Research Institute of the sugar industry, Russia
-mail: [email protected]
* Corresponding person
Abstract
Experimental samples of three species -rich amorphous- crystalline sugary
products based on pure sugar solution with the addition of natural freeze-dried
cranberry juice powder , black currant and vitamin- mineral premix " Valetek -5 ."
Studied their properties as a set of consumer organoleptic , physico- chemical
properties and nutritional value. Organoleptic properties were evaluated based on the
developed 5 - point scale . Revealed that all samples of attractive properties possess
organoleptic character corresponded to the 5 points scale. A high nutritional value of
products containing up to 30 % of the daily needs of people in micronutrients . The
possibility of using these products for the prevention of cardiovascular disease and
anemia.
341
5 D 7 ?
$
' F
'
2020 . ( H<,
? ? <
< <. 5, <
< , ? H %
.
' “%”, < ?D? <
D, , <, <
. $ H
< < <
, , %
-<
,
<
<
<
H
< , 7, <
7 2,5% [1, 2]. $
“%”, 7
.
5
< ?
<? < <
< 7 [3]. Z
%
<
<
%D , ?? 7
<
<
7
?
, <
<
, D? % < , 7D
?D . , ?
, 10% ?D? , 4 7, < ?
.
$%&" '" !
FU
< D ?
<
%
- . ?
<
<
? , <
<
%
- < <
-
%
< Varian,
<
% Ultimate 3000, <
=#5-10.
342
()!" !
$
H< 3 ? <
%
?D? , %
<
<: < ; < <
< <
; <
?D? . ( ?D? < 7 <
-<
< “(-5”, ? , <, <
- <
H<, D? D? < < . , D <, %
-<< <, ?
D, < 7
, , ,
, D? ?, <
- <
H<
,
<
.
< <
%
- D % %
< <
<
1,0…5,0 << – < <
7
D <
3…5% (.1); 1,0…3,0 << – <
<
-<
<
“(-5”
0,5%.
F
, D 5D 7, D?D 7 , , , , .
'
1 – 8<
%
- ,
? < D
' D, 3
5 < 7: < %D
%
<, D 7
D , 40 <
%
-D
,
<
?D? , D < (. 2). ( < , H
< < < < -
; ,
-
?
343
? < <, – <
-<< <
< “(-5”. & < %
D < < %, ?
<< ( – <
-<< <
< “(-5”.
Q< <, < <
< .
'
2 – ( <
%
-
( 40 )
$ %
-<
(.1),
, < , < <, D?< , D D? ?. F D
%
<, , , D , 7D . 5 < <
D D? ? D, <
< 10% D
%
.
Q
1
–
-< ?
$
5 < 7
<
D
5 < 7
<
<
5 <
-<<
<
< “(-5”
<
%
-
5
, %
5
D?
?, %
5
, %
5
<
, %
91,01
6,52
2,23
0,12
93,17
3,89
2,15
0,11
95,29
2,11
1,90
0,10
< < ?, .. <
- <
H<
, <, ,
<
, <, 6-10 7, < <
-<
<.
( < , < <
? <
%
- D <
344
: , %
D
, D? H
D; D ,
D? < <
.
$?D <
-<
, D : < 5, %
, < (,
<, , . $ H
< ?< , <
<
< <
15 50% <
%
, < =' 2.3.1.2432-08 “
<
%
H ? ? '
”.
< <
?D?<
< (.2). Q, : < 5
– ?
D, 6…34% ; %
, D? D
, <
, <
D , 20…26%. Q < H <
,
%
D
D D . ( <
-<< <
< “(-5” %
38% , – 100%, <
D? <
.
Q 2 – =
? <
%
-
=
(< 5, </100 (< (1, </100 (< (2, </100 (< (6, </100 (< (9, </100 (< '', </100 , </100
, </100 , </100
†
, </
=, </100 ,
- *
F
? <
%
-
<
<
<
7
<
<<
7
< <
<
D
<
“(-5”
7,11±0,36
3,84±0,19
23,84±1,19
0,65±0,03
0,05±0,002
0,51±0,03
0,12±0,01
0,12±0,01
0,12±0,01
–
–
4,51±0,23
–
–
0,25±0,01
0,63±0,03
0,85±0,04
0,69±0,03
–
–
0,15±0,01
15,97±2,36
14,19±2,84
7,30±0,51
2,6±0,27
18,5±2,64
11,83±2,01
10,54±1,11
2,7±0,19
23,15±3,42
12,52±2,23
23,70±1,66
1,6±0,35
5,2
6,6
1,0
345
( < % <
30% ?D <
< % -
<.
, H<
?
<
%
-
< < – , D? H
D,
< < < ?, <
7< <
-<
< “(-5”,
D? <, 7D ?D .
""
$
<
<
%
-
D
, 7
?
, <
< 7
<
.
+%!-/0 3
1. )
=.. F <
< [Q] / =.. )
[ .] // Q '5$ – 2003. – (. 5. – 5.
49-55.
2. )
=.. '
< . [Q] / =.. )
[ .] // $? <7
, 2005. – R4. – 5. 119.
3. $ 2181774 '
, =$7 513F3/00, 513F1/00,
513F5/00. 5
?
[Q] / 8 (.(. [ .]; .27.04.2002, #D. R 36. – 4 .
346
=8 664:635.24
8 7- 7=
8--7 8
.., 3 .. *, 9 .., ') .8.,
)' ..
! -" # #$" , e-mail: [email protected]
*
%, " $ D <
<
-
-<
, <
<. (
<
- <
?D %
, <
7
< .
STUDY OF POLYSACCHARIDE-PROTEIN-MINERAL ADDITIVE
MACRO- AND MICRONUTRIENTS CONTENT
Lisovoy V. V., Kupin G. A.* , Fatkina E.V., Tamazova S. Y., Kazimirova M.A.
Krasnodar Research Institute of Storage and Processing of Agricultural Products of
Russian academy of agricultural products, Russia,
e-mail: [email protected]
*Corresponding person
Abstract
Results of beet presscake origin polysaccharide-protein-mineral additive
macro- and micronutrients content have been represented. High content of macroand micronutrients in additive provides it’s food value and functional properties. It
has high profile from the point of view of application in healthy nutrition food
products production.
T< < , ,
D? . D <, < < H < [1].
<
-
-<
< <.
347
, < , D <
- <
[2].
! H
, < D
<
- <
, ? -
<
, <
< < , <D? «
-».
$%&" '" !
FU
< -
-<
< <, H <.
Z<
<<
<
, <
?D <
?
-%
H%%
<
%
<
<
<
< «=
< 8-02».
()!" !
< H ? < -
-<
.
' 1.
Q 1- F? < -
-<
<
& =
, %:
?, < :
93,8
15,3
71,5
< ?
7,0
F
D
-
-<
(
70 %), H
,
.
( 2 , ? -<
.
Q 2 – 5
-
<
<
5
, %
=
, < :
4,0
%
3,5
D
0,5
9,1
348
<
$? , < :
?, <
:
D
<D
5
, %
58,4
29,3
5,0
24,3
19,8
19,3
2 , -<
? << 7
? (81 %) , < ?<, D
<D
<.
5 < ? ? (
50 % ? << ? ), D?
<,
<,
<,
<< D?< <.
!, (15,3%), <
. ( 3 .
Q 3 – 5
<< <
, ? -
-<
<
5
<
, « »
<
/100 8F/(F&
(
4,65
5,00
3,70
4,00
/
7,40
7,00
/
4,60
5,50
=
+ 1,45
3,50
Q
2,87
4,00
Q
%
1,15
1,00
+ 7,05
6,00
5<< <<
<
32,87
36,00
3 , << <
, ?
-<
, «
», .
( <
-
-<
< ?, H
, <
- <
H<
( 4).
349
Q 4- 5
<
- <
H<
-<
<
H<
5
H<
=
H<, </100 :
1982
%
%
534
88,8
<
39,7
=
H<, </100 :
14100
11900
<
5400
<
2400
<
9950
42
24
4 , <
-
-< <
H<< <,
, %
%
, <, <
H<< - , ,
<, , <, <.
5 <, -
<
< <
H<
, <, <
H<
- , <, %
%
, < 7
< <
.
""
Q< <, <
- <
<D -
-<D
, D -
< <,
<
<
.
+%!-/0 3
1.Q
<: , ?, <
H
<,
(, , ) : <
% / '.. ‹
,
'.8. 7, '.. ), ).$. , (.. 7; ! , .. - .-. ; . '.. ‹
. : "
< - `, 2013.-184 .
2. ‹
'. 5
-? < /
'.. ‹
, (.(. , .8. , '.. ) // ( '85E,
2009. – R 6. – 5.79-82.
350
.
., .., .., ..
« »
Petrenko I.M., Lisovoy V. V., Viktorova E. P., Matvienko A. N.
Design of complex measures for effective implementation of Krasnodarsky krai
legislative Act «About production of organic agricultural products in krasnodarsky krai» . 3
1. ............................................................................. 8
.., .., .., ! ..
! "#
Lukina G.D., Kudashev S.N., Pushkar T.D., Solovykh S.I
Influence on protein ozonization wheat grain ...................................................................... 9
.., " .., #" ..
Avilova S.V., Grysunov A.A., Pomaskina N.V.
Determination of shelf life criteria of apples in storage at negative temperature................ 15
..
$ %2- # & # Sviridov D.A.
The use of CO2-extract from grape seeds as a food additive for vegetable oils.................. 20
$ ..
'# # # #
Prichko T.G.
New innovative approaches to technology storage plums................................................... 25
.
.
() I.M. Novikova
The duration of storage and the persistence
consumer properties of garden strawberries’s berries (fragaria’s berries) ......................... 31
351
2. .................................................. 37
% &.
.
$ # #
# Prigarina O.M.
Use a pea flour in technology of biologically valuable grain pasta..................................... 38
# &.., &..
# # &# Evdokimova O.B. Kurnakova O.L.
Justification of the choice of used ferments by production of yoghurts.............................. 44
$ .., '$ .., ( ..
( # # Prichko T.G., Droficheva N. V., Chernenko A.V.
Production of multicomponent functional products on the basis of fruits rare cultures...... 49
!) *.+.
$ # "# Dahuzheva Z.R.
Study of the influence of phospholipid products on the rheological properties
of chocolate masses ............................................................................................................. 56
.., & . .
&# )& Ivanova T.N., Orlova I.V.
Enriched juice drinks ........................................................................................................... 62
- .., ..
&
Polyakova E.D., Ivanova T.N.
Rationale for use multicomponent fortifier edible vegetable diabetic purpose.................. 66
.., ./., ..
$ # )# Kurakin A.N., Krasin I.B., Kureshova E.A.
Functional study of flow characteristics chewy candies ..................................................... 71
352
0 .
., " .., .
.
$ -) )
# #
#
#
Sapronov N.M. *, Morozov A.N., Aksenov D.M.
Study temperature and humidity storage for sugar beet polymer hideaway
with antimicrobial properties ............................................................................................ 175
./., .., 20-3 ..
! # # # Krasin I.B., Krasin P.S., Hashpakyants E.A.
Effect of additives on non-traditional functional properties of flour confectionery............ 80
+- .., 20 .., / .
., "3 ..
,& )& #
Rylskaya L.A., Khripko I.A., Borisova M.M., Kuznetsova V.P.
Justification of making structuring component inulinsoderzhaschie spreads ..................... 84
.., )! .., 3 .., 3 ..
'# )# &# Gavrilina N.V*, Kozhukhova M.A., Volinets A.V., Volinets E.V.
A new approach to formulation of frozen vegetables mixtures........................................... 90
3. ........................................... 95
.., - .., +- 4.5., &0 .2.
% )& Paskaru K.G., Litvyak V.V., Roslyakov Yu.F., Ospankulova G.Kh.
Way of reception of the reagent containing starch modified for drilling ............................ 96
% . 2., 6! . ., " *. .
/
Mugu D. H, Siyukhova N. T., Tazova Z. T.
Biochemical characteristics of the circassian varieties ofapples ....................................... 105
(# *.
., % .
.
:
Chermi Z.M., Ageev N.M.
Dynamics lightening wine using chitosan ......................................................................... 110
353
.., 78 .., 9 ..
! # & Pershakova T.V., Shubina L.N., Jakovleva T.V.
Influence of the type of culinary processing on the structure of functional substances
of mangold......................................................................................................................... 114
$% *..
$ # Achegu Z.A.
The use of non-traditional grain raw material in the production of ethanol...................... 120
/ . &. 8 . ., 8# . .
;
- # # # #
Bolshakov E.O., Dibirasulaev M.A., Abramov L. C.
The experimental and analytical foundation for methods of measurement of freezing
point temperature of salmon caviar ................................................................................... 126
# &.4.
< Eremina O. Yu.
Deep complex processing of groats................................................................................... 132
6 &.., .., : .., %$ .9.
! & # Klueva O.A., Korovkina N.V., Korolev A.A., Megerdichev E.Ya.
Effect of heat treatment on protopectin hydrolysis of fruits and vegetable raw material . 136
* .+., /$ ..
$ )) saccharomyces cerevisiae
Zakuyeva S.R., Bykovchenko T.V.
Research of influence of spices on yeast saccharomyces cerevisiae................................. 142
3- .., ; ..
( –, , # #
aspergillus niger
Trotskaya T.P., Hushcha E.T.
The prospect of using chitin-glucan complexes isolated from biomass aspergillus niger 146
354
#$ .5., $- &.., # ..
# # ) ) Dremucheva G.F. , Karchevskaya O.E., Smirnova S.A.
Development of formulations and technologies of extrusion and bakery products
of low humidity of processed triticale grain...................................................................... 150
.., / *.
., 0! ..
: # # Lukin N.D., Borodina Z.M., Papakhin A.A.
Action of amylolytic enzymes upon native starches in heterogeneous medium............... 154
6 .., # 4.., ! .
., $ ..
>
# – #? Guluyk N.G., Komarov Y.I., Pikhalo D.M., Puchkova T.S.
Amylopectin starch – perspective raw material for @-cyclodextrin production ................ 160
+#- ..
% , # # Romanovska T.I.
The chemical composition of soapstocks from refining vegetable oils............................. 166
)! .., " .., " +..
< #
#
Kozhukhova M.A., Nazarenko M.N., Drozdov R.A.
Topinambur inulin hydrolysis by invertase ....................................................................... 170
$ .., .., 4$ .., ( ..
$ # # )
Lychkina L.V., Korastileva N.N., Yurchenko N.V., Chernenko A.V.
The study physiologically functional ingredients of non-traditional raw materials
of plant origin .................................................................................................................... 175
- .., 0 ..
$ # />: «/»
Lukyanenko M. V., Kupin G. A.
Study of BAA «Biopekt» functional ingredients content.................................................. 179
5 .., 0 ..
- # Fat’kina E. V., Kupin G. A.
Peculiarities of jerusalem artichoke overground biomass and tuber macro
and micronutrients content ................................................................................................ 183
355
"- +.., - .., .., *8 .4.
«G+» ,& Kazaryan, R.V., Gordievskaya, A.A., Mosolova N.N., Zlobina E.U.
Determining the effective amount feed additives "Tetra +" for introduction to the diet
of lactating cows................................................................................................................ 188
4. ......................................... 194
.., 4 &..
Eliseeva L.G., Yurina O.V.
Determination of nuts’ biotoxicity during the storage period ........................................... 195
- .., .., .
., %' &..
; )# )& Lisovaya E.V., Viktorova E.P., Prudnikov S.M. , Agafonov O.S.
Effectiveness of nuclear magnetic relaxation quality assessment of complex systems
lipid.................................................................................................................................... 201
# &.., ..
M # #", ) #
Evdokimova O.V., Kornen N.N.
Methodological approaches to increase the effectiveness of promotion of healthy
products power on the consumer market........................................................................... 206
% .., /$ ..
$ )) " # # Sagui A.V., Bykovchenko T.V.
Study antagonistic properties of yeast in respect of fungi penicillium roqueforti,
penicillium funiculosum - agents of bread molding ......................................................... 213
/-#8 ., /$ ..
$ # "
# penicillium roqueforti, penicillium funiculosum
Byambaa A., Bykovchenko T.V.
Study antagonistic properties of lactic acid bacteria in respect of penicillium roqueforti,
penicillium funiculosum.................................................................................................... 217
356
2 9..
( # # # ) "#
Khit Y. V.
Preparation of the experimental data to obtain the feature space recognition hidden
infestation of wheat .......................................................................................................... 222
- .., 8# .
., .<.
, ..
> # # Polyakov V.A., Abramova I.M., Medrish M.E., Pavlenko S.V.,
The relevance of indication of ion contents of water and vodka while quality
and safety control of alcoholic drinks................................................................................ 227
*83- .., .., 3 ..
lactobacillus # # , ,& # #
# Zabolotskaya T.A., Davydova E.A., Lilishentsava A.N.
Determination of the amount of bacteria lactobacillus kind and their influence
organoleptic semi-hard cheese with a low temperature of second heating matures
by the propionic acid bacteria starter culture and the extension........................................ 233
/ &.
., ..
, #&# VX Y
Blinnikova O.M., Eliseeva L.G.
Integrated assessment of fruits of chaenomeles mauleya, grown in the conditions of the
Central Black Earth Region of the Russian Federation..................................................... 238
/ .., - .., # .&., ./.
$ , # Belina N. N. , Lisovaya E.V. , Gerasimenko E.O., Tarasova N.B.
Investigation indexes of quality, safety and composition of rape lecithin ........................ 244
% .., /! .., + &.., 4..
Grigoriev A.A., Borodikhin A.S., Rudenko O.V., Sova U.A.
Peculiarities of accumulation of plumbum in above-ground biomass and topinambur
tubers ................................................................................................................................. 249
357
5. , , ........................................................................................................ 256
..
# #
Vsevolodov A.N.
estimation of the maximum and minimum effort of breakoff of soil contaminations
from the surface of vegetative raw materials..................................................................... 257
.., (8 .., - 4..
G -# 1. # - Novoselov A.G., Chebotar A.V. Gulyaev Yu.N.
Cereal for water suspensions in pipes. 1. the rheological characteristics water
suspensions of grain and change in the water and heat treatment .................................... 264
($ .., " *..
# "# "#
# Chich S. K.,Tazova Z. T.
The development of new technological methods of fusel and subfusel fractions
utilization on the wash rectifying installations .................................................................. 270
- .., %)- ..
M
# # # >(
Kudryashov V.L., Pogorzhelskaya N.S.
Membrane processes as basis of innovative technologies of agro-industrial complex ..... 275
! ./.
)),& # Daishowa A.B.
Assessment thinning ability cocoa butter and phospholipid products............................... 281
/% &.., ..
:
& # #)
Bogdanova O.A., Ivanova T.N.
Dynamics of extraction of dry substances of marc berry .................................................. 287
0 ..
" # ,
# & #
Popov V.G.
Rationalization of technological process freeze-drying water extracts retrieved
from wild-growing medicinal plants ................................................................................ 291
358
0 ..
$ # # &
& # Popov V.G.
Intensification of extraction of soluble biologically active substances from wild plant
materials by the method of electrodialysis ........................................................................ 296
20 .., )! .., + .., / 4..
#
)# &# Khripko I.A., Kozhukhova M.A., Revin A.P., Beresneva Y.N.
Formulation quick vegetable mixtures based on yacon .................................................... 302
.., /8 +.<.
%# # #
)
Danko V.P., Bobrovskyi R.
Solar with multichannel absorber life support systems ..................................................... 307
6. ....................................................................... 312
..3 .&.
% # Savostin A.V., Gorodecky V.&.
comparative performance evaluation of evaporaition of descalinq juice sugar industry . 313
.
., 3 .&., 3- .., -- ..,
#! .&., =# .
.
! #,) ,, # Daisheva N.M., Gorodecky V.O., Gorodeckaya A.D., Kotlyarevskaya N.I.,
Semenikhin S.O., Usmanov M.M.
The influence of technological characteristics of sugar beet roots infected
in different degrees by rot on the quality and product yield.............................................. 318
6 .., 3- .., .
., -- .., =# .
.
! , , Lyusy I.N., Gorodeckaya A.D., Daisheva N.M., Kotlyarevskaya N.I., Usmanov M.M.
The influence of seed material used in boiling of massecuite on quality
of finished product............................................................................................................. 325
359
.., 3 .., .4., : .., 8 .
.
)
Kondratenko V.V., Sinitsyn A.P., Kondratenko T.Yu., Kiseleva L.V., Alabina N.M.
Toward to sugar beet protopectin fragmentation by biotechnological methods ............... 329
.+., 2 .., " &.., - ..
( ,# ) Andreev N.R., Khvorova L.S., Selezneva O.S., Kotlyarov G.S.
Crystallization of anhydrous glucose in polythermal conditions ...................................... 337
% .., ! ., !$ ..
- # Egorova M.I., Milykh A.A., Mihailichenko M.S.
Estimation of consumer properties of semicrystalline sugar products ............................. 341
.., 0 .., 5 .., #" .4., "# ..
$ - --
Lisovoy V. V., Kupin G. A., Fatkina E.V., Tamazova S. Y., Kazimirova M.A.
Study of polysaccharide-protein-mineral additive macro- and micronutrients content ... 347
G# , .
G : . . : . . : . . ( 13.05.14.
Y
6084/8. /
. < Times.
\.-. . 34,88. ] 1679. G) 100.
$( (
%.>. — , .
G./: (3412) 56-95-53
426034, . $), . , 244.
360
1/--страниц
Пожаловаться на содержимое документа